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Abstract: In this paper, we present programs in Picat for solving three planning puzzles, including 15-puzzle, Klotski,
and the Rubik’s cube. All these programs use the planner module of Picat. For a planning problem, we only need to
specify the conditions on the final states and the set of actions, and call the planner on an initial state to find a plan or a
best plan. The planner module uses tabling. It tables states encountered during search and performs resource-bounded
search to fail states that cannot lead to a final state with the available resources. The Picat programs for the problems are
straightforward. The programs for 15-puzzle and Klotski are very efficient. The Rubik’s cube program has succeeded
in solving instances that require 14 or fewer moves. As computers have more and more memories, we believe that the
tabling approach to planning will become increasingly more effective and important.
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1 INTRODUCTION

The classical planning problem has been a target problem
for logic programming since its inception. The first logic
programming language, PLANNER [3], was designed as
“a language for proving theorems and manipulating mod-
els in a robot”, and planning has been an important prob-
lem domain for Prolog [8, 11]. Despite the amenability of
Prolog to planning, there has been little success in apply-
ing Prolog to planning due to the looping and the state ex-
plosion challenges. The planning problems that have been
tackled by using Prolog are mostly toy problems, and Pro-
log is not recognized as a tool for planning.
The tabling approach to planning as provided by Picat[13]
is more effective than Prolog, ASP [1, 9], and the satis-
fiability [4, 10] approaches to planning. Just like tradi-
tional STRIPS-based planners [2], a tabling-based plan-
ner treats a planning problem as a state-space search prob-
lem. During search, the planner tables all the states that
have been encountered so that no state will be expanded
more than once. The success of the tabling approach is at-
tributed to several techniques, including term-sharing [15]
and resource-bounded search [13]. The term-sharing tech-
nique alleviates the state explosion problem commonly
seen in planning problems. The resource-bounded search
technique determines if a state should be expanded based
on the current resource amount and whether or not the state
has failed before.
We have written programs in Picat to solve several planning
puzzles. The programs are available at:

http://picat-lang.org/projects.html

In this paper, we present the programs for three problems,
including the 15-puzzle, Klotski, and the Rubik’s cube. For
each problem, we describe the program and report on the

experimental results.

2 THE PLANNER MODULE OF PICAT

Picat is a logic-based multi-paradigm programming lan-
guage that provides pattern matching, deterministic and
non-deterministic rules, loops, list comprehensions, func-
tions, constraints, and tabling as its core modeling and
solving features. This section briefly describes the plan-
ner module of Picat. The readers are referred to the user’s
guide [14] and Hakan Kjellerstrand’s Picat page [5] for the
details of Picat, and [13] for the details of the implementa-
tion.
The planner module of Picat provides predicates that
can be used to solve planning problems. Given an initial
state, a final state, and a set of possible actions, a planning
problem is to find a plan that transforms the initial state
to the final state. In order to use the planner module to
solve a planning problem, users have to define final/1
or final/3 to specify the conditions on the final states
and action/4 to specify the state transition diagram.

• final(S): This predicate succeeds if S is a final
state.

• final(S,Plan,Cost): A final state can be
reached from S by the action sequence in Plan with
the cost Cost. If this predicate is not given, then the
system assumes the following definition:

final(S,Plan,Cost) =>
Plan=[], Cost=0, final(S).

• action(S,NextS,Action,ActionCost): This
predicate encodes the set of actions of the plan-
ning problem. The state S can be transformed to
NextS by performing Action. The cost of Action



import planner.

go =>
S0=[s,s,s,s],
best_plan(S0,Plan),
writeln(Plan).

final([n,n,n,n]) => true.

action([F,F,G,C],S1,Action,ActionCost) ?=>
Action=farmer_wolf,
ActionCost=1,
opposite(F,F1),
S1=[F1,F1,G,C],
not unsafe(S1).

action([F,W,F,C],S1,Action,ActionCost) ?=>
Action=farmer_goat,
ActionCost=1,
opposite(F,F1),
S1=[F1,W,F1,C],
not unsafe(S1).

action([F,W,G,F],S1,Action,ActionCost) ?=>
Action=farmer_cabbage,
ActionCost=1,
opposite(F,F1),
S1=[F1,W,G,F1],
not unsafe(S1).

action([F,W,G,C],S1,Action,ActionCost) =>
Action=farmer_alone,
ActionCost=1,
opposite(F,F1),
S1=[F1,W,G,C],
not unsafe(S1).

opposite(n,Opp) => Op=s.
opposite(s,Opp) => Opp=n.

unsafe([F,W,G,_C]),W==G,F!==W => true.
unsafe([F,_W,G,C]),G==C,F!==G => true.

Figure 1: A program for the Farmer’s problem.

is ActionCost, which must be a non-negative inte-
ger. In case the plan’s length is the only interest, then
ActionCost should be 1.

The following predicates and functions are used in this pa-
per.

• plan(S,Limit,Plan,PlanCost): This predi-
cate, if succeeds, binds Plan to a plan that can trans-
form state S to a final state that satisfies the condition
given by final/1 or final/3. PlanCost is the
cost of Plan, which cannot exceed Limit, a given
non-negative integer.

This predicate searches for a plan by performing
resource-bounded search. In the search tree, each
node represents a state and carries attribute values in-
cluding the remaining resource amount that can be
used by future actions to transform the state to a final
state. In resource-bounded search, a node is expanded
only if the state is new and the resource amount is non-

Figure 2: 15-Puzzle

negative, or the state has occurred before in an old
node that had failed before due to a lack of resources
but the current node carries more resources than the
old one. The arguments Limit and PlanCost are op-
tional. If PlanCost is missing, then the cost of the
plan is not returned. If Limit is missing, then a large
integer is used as the resource limit.

• best plan(InitS,Limit,Plan,PlanCost):
This predicate uses plan/4 to find an optimal plan.
It first calls plan/4 to find a plan of 0 cost. If no
plan is found, then it increases the cost limit by 1. In
this way, the first plan that is found is guaranteed to
be optimal. If no plan is found after the cost exceeds
Limit, then the predicate fails. The arguments
Limit and PlanCost are optional. For example,
best plan(InitS,Plan) finds an optimal plan,
imposing no limit on the cost.

The following built-ins can be used to retrieve the attribute
values of the current node if the search is initiated by plan
or best plan.

• current resource(): This function returns the
resource amount of the current node. This function
can be used to check a heuristic function. If the heuris-
tic estimate of the cost to travel from the current state
to a final state is greater than the available resource
amount, then the current state can be failed.

• current plan(): This function returns the plan in
reversed order that has transformed the initial state to
the current state. The current plan can be used to ban
certain sequences of state transitions.

The program shown in Figure 1 solves the Farmer’s prob-
lem by using the planner module. In this example, the
length of the plan is the only interest, so the cost of each
action is 1. Also, note that there is no heuristic function
used. Pattern-matching requires all output unifications to
be given in the bodies of rules. Pattern-matching facilitates
full indexing of rules. For this example, the matching of the
first argument of a call against the four-element list pattern
is done only once for each call.

3 THE 15-PUZZLE

In the 15-puzzle, there is a 4×4 board and there are fifteen
tiles numbered from 1 to 15. In a configuration, each tile
occupies a square on the board, and one square is empty.
The goal of the puzzle is to arrange the tiles from their ini-
tial configuration to a goal configuration by making sliding
moves that use the empty square. Figure 2 shows an in-
stance.



3.1 Encoding
A state is represented by a list of sixteen elements. Each el-
ement is a cons [Ri|Ci]where Ri is a row number and Ci

is a column number. The first element in the list gives the
position of the empty square, and the remaining elements
in the list give the positions of the numbered tiles from 1 to
15.
The final/1 predicate is defined as follows:

final(State) =>
State=[[1|1],[1|2],[1|3],[1|4],

[2|1],[2|2],[2|3],[2|4],
[3|1],[3|2],[3|3],[3|4],
[4|1],[4|2],[4|3],[4|4]].

which represents the configuration where the empty square
is located at the upper left corner, and the numbered tiles
are ordered from left to right and top to down.
The actions are defined by four rules, each representing a
changing move of the empty square in one of the four dif-
ferent directions: up, down, left and right. For ex-
ample, the following rule defines the up move.

action([P0@[R0|C0]|Tiles],NextS,Move,Cost) ?=>
R1 = R0-1,
R1 >= 1,
Move=up,
Cost=1,
NewP0 = [R1|C0],
update(Tiles,P0,NewP0,NewTiles),
manhattan_heuristic(NewTiles),
NextS=[NewP0|NewTiles].

Let P0=[R0|C0] be the current position of the empty
square. After it is moved up, its position is changed to
NewP0=[R0-1|C0]. The update predicate changes
the tile that is currently at NewP0 to P0.

update([NewP0|Tiles],P0,NewP0,NewTiles) =>
NewTiles = [P0|Tiles].

update([Tile|Tiles],P0,NewP0,NewTiles) =>
NewTiles=[Tile|NewTiles1],
update(Tiles,P0,NewP0,NewTiles1).

The predicate manhattan heuristic(NewTiles)
checks if the Manhattan distance from the new state to the
final state is less than the current resource bound. The func-
tion current resource is used to retrieve the current
resource amount.

3.2 Experimental Results

We have run the Picat program on the instances used in the
second ASP competition. Picat found optimal solutions to
all of the 15 instances used in the competition. For most of
the instances, it took less than 1 second, and it took only 4
seconds to solve the hardest instance. In comparison, the
winner of the competition, Potassco, failed to find optimal
solutions to 5 of the 15 instances within the time limit of
15 minutes per instance.

All the experimental results given in this section and afterwards were
obtained on a Linux machine with 4-core AMD II X4 945 processor and
8GM RAM.

Figure 3: Klotski

Tabling and resource-bounded search are crucial for solv-
ing the problem. The Manhattan distance heuristic also
contributes to the good performance of the program. When
the heuristic is not used, the program runs out of memory
on all of the instances.
Our Picat program is comparable in speed with the best
IDA* algorithms that use heuristics and pattern databases
[7]. Unlike the IDA* algorithms, our Picat program does
not require pre-computation of pattern databases. Our pro-
gram does not use the heuristics to select best nodes to ex-
pand, but uses the heuristics to fail nodes.

4 Klotski

Klotski is another sliding puzzle. There are one 2×2 piece,
one 2 × 1 piece, four 1 × 2 pieces, and four 1 × 1 pieces.
Initially the pieces are placed on a 4×5 board, as shown in
Figure 3. The goal of the game is to slide the 2 × 2 piece
to the exit. No pieces can be removed from the board and
pieces can only be slid to the empty spaces horizontally or
vertically.

4.1 Encoding
A state is represented as a list of positions of the pieces and
the free spaces.

[FreeSpaces,Piece22,Piece21,Pieces12,Pieces11]

A position is represented as a pair of coordinates on the
board. We use a coordinate system where the origin is at
the top-left, the x-axis goes from left to right, and the y-
axis goes from top to down. An element of the list is either
a pair, such as Piece22, that represents the position of a
piece, or an ordered list of pairs, such as Pieces12, that
represents the positions of the pieces of the same type.
The condition for the final states is given by the final
predicate.

final([_,(2,4)|_]) => true.

When the 2 × 2 piece is at the position (2,4), the piece
can be moved out the board in the next move.
The definition of the actions is straightforward. For ex-
ample, in order to move the 2 × 2 piece left, the two free
spaces must be vertically adjacent to the left edge of the
piece. After the move, the x-coordinate of the piece be-
comes one unit smaller and the x-coordinates of the free
spaces become one unit larger than the old values.

4.2 Experimental Results
Our Picat program finds in 15 seconds an optimal solution
that consists of 116 moves. As sliding a piece to a free
space and then sliding it to the next free space constitute



Figure 4: Rubik’s Cube

two moves in the encoding, the solution is longer than the
known minimum number of steps of 81.
Just like the 15-puzzle program, this program can be im-
proved by using heuristics: after the current state is ex-
panded to a new state, a heuristic function can be called to
estimate the number of steps required to transform the state
to a final state. If the estimated number of steps is greater
than current resource(), then the new state can be
failed immediately.
We could not find programs for this problem in Prolog,
ASP, or PDDL. This problem may be hard for ASP and any
other SAT-based planners because grounding can be a big
challenge. A breadth-first search program written Haskell
solves the problem in 2 seconds [12].

5 Rubik’s Cube

The Rubik’s cube is a very popular and very challenging
combinatorial puzzle. In the standard version, the cube is
made up of 3 × 3 × 3 = 26 cubies. Each of the 6 faces
can be turned 90, 180, or 270 degrees relative to the rest of
the cube. In the goal configuration, each of the 6 faces of
the cube has a single unique color. Given a random config-
uration of the cube, the goal of the puzzle is to transform
the configuration into the goal configuration through a se-
quence of turns. Figure 4 gives an example instance.

5.1 Encoding
The Rubik’s cube has 26 cubies. We call a cubie a piece in
this paper. A center piece has only one exposed square, an
edge piece has two exposed squares, and a corner piece has
three exposed squares. We assume that the center pieces
stay still in the following way:

back (b) yellow
down (d) orange
front (f) white
left (l) blue
right (r) green
up (u) red

In this way, we can represent a face by the color of its center
piece.
We use six letters (b, d, f, l, r, and u) to identify both
the faces of the cube and the colors of the squares in the
pieces. We use a two-letter ordered name to identify each
edge piece and a three-letter ordered name to identify each
corner piece. The letters in the name tell the colors of the
squares of the piece. For example, the edge piece named
bd has yellow and orange squares.
We also use the six letters to identify locations. The twelve
edge locations are:

[bd,bl,br,bu,df,dl,dr,fl,fr,fu,lu,ru]

For example, the location bd intersects the back and down
faces. The eight corner locations are:

[bdl,bdr,blu,bru,dfl,dfr,flu,fru]

We assume that the locations are ordered by name.
An edge piece has two possible orientations. For each piece
and each of its orientations, we use a unique atom to iden-
tify the piece in the orientation. For example, the atom
fu2 represents the white-red piece and the orientation is 2.
Let S1 and S2 be the two square colors of an edge piece
(S1 < S2), and let the two faces that the edge piece inter-
sects be F1 and F2 (F1 < F2). If the square S1 is on F1,
then the orientation is 1; otherwise, if S1 is on F2, then the
orientation is 2. For example, when fu is at the edge of
back-down (bd), fu1 means that the f (white) is on the
back and fu2 means that f is on the down face.
A corner piece has three possible orientations. Again, for
each piece and each of its orientations, we use a unique
atom to identify the piece in the orientation. Let S1, S2,
and S3 be the three square colors of a corner piece (S1 <
S2 < S3), and let the three faces that the piece intersects be
F1, F2, and F3 (F1 < F2 < F3). The orientation is 1 if the
square S1 is on F1, 2 if S1 is on F2, and 3 if S1 is on F3.
For example, consider the corner piece fru (white-green-
red). When this piece is located at the corner that intersects
the back, left, and up faces (i.e., the corner location bfl),
if the white square (f) is on left, then the representation is
fru2 because l is the second letter in the location name.
We represent a state as a structure
pieces(Edges,Corners), where Edges is a
list of edge pieces in the ordered edge locations and
Corners is a list of corner pieces in the ordered corner
locations. We use two separate lists rather than one larger
list because edges and corner do not share names. Also
we use lists rather than arrays or structures because list
suffixes can be shared among states [15].
The final state is specified by the following predicate:

final(pieces(Es,Cs)) =>
Es=[bd1,bl1,br1,bu1,df1,dl1,

dr1,fl1,fr1,fu1,lu1,ru1],
Cs=[bdl1,bdr1,blu1,bru1,dfl1,dfr1,flu1,fru1].

A state is final if all of its pieces have correct positions and
orientations.
It is very straightforward to define the actions. For exam-
ple, the action that turns the front face 90 degree clockwise
can be defined as follows:

action(pieces(Es,Cs),NewS,Action,Cost) ?=>
Es=[BD,BL,BR,BU,DF,DL,DR,FL,FR,FU,LU,RU],
Cs=[BDL,BDR,BLU,BRU,DFL,DFR,FLU,FRU]),
Action=f,
Cost=1,
turn_edge(FR,FR1),
turn_edge(DF,DF1),
turn_corner(f,dfr_dfl,DFR,DFR1),
turn_corner(f,dfl_flu,DFL,DFL1),

The list patterns of Es and Cs are moved to the body for the sake
of formatting. They should be placed in the head so that all the rules can
share the patterns and pattern-matching can be done only once for a call.



turn_corner(f,flu_fru,FLU,FLU1),
turn_corner(f,fru_dfr,FRU,FRU1),
NEs=[BD,BL,BR,BU,FR1,DL,DR,DF1,FU,FL,LU,RU],
NCs=[BDL,BDR,BLU,BRU,DFR1,FRU1,DFL1,FLU1],
NewS = $pieces(NEs,NCs).

The call turn edge(X,X1) changes the edge piece X to
X1. If X’s orientation is 1, then X1’s orientation becomes 2;
otherwise, if X’s orientation is 2, then X1’s orientation be-
comes 1. The call turn corner(Face,C C1,X,X1)
changes the corner piece X to X1 after a turn of Face and
the piece moves from the location C to C1.

5.2 Improvements and Experimental Results
The basic model is not efficient. In order to find a plan of
length n, it generates all the nodes of the search tree that
have depth n or less. It can be used to solve configurations
that require 7 or fewer steps. For more difficult configu-
rations, the program will run out of memory since it will
require a large table to store all the states. For n = 8, there
are already 1,373,243,544 nodes [6]! Even with sharing,
these nodes would require a huge amount of memory to
table.
We can use a heuristic function to improve the efficiency.
After each node is generated, we estimate the cost for trans-
forming the state to the final state. We can use the built-in
function current resource() of the planner mod-
ule to retrieve the current resource limit. If the estimated
cost is greater than the limit, the node should be failed. In
order to guarantee the soundness and completeness of the
program, the heuristic function must be admissible. Unfor-
tunately, there are no good admissible heuristic functions
available for Rubik’s cube. The total Manhattan distance
of the pieces is not an admissible heuristic, even when it
is divided by 8. We can also use the number of moves re-
quired to put the corner pieces into correct positions as a
heuristic, as is used in Korf’s program [6]. However, it’s
space consuming to store the pattern databases, unless the
pattern databases are compressed. Therefore, we need dif-
ferent kinds of improvements.
The first improvement, called target enlargement, is in-
spired by bi-directional search. The number of nodes to
be generated from depth n to n + 1 is exponential in n.
Therefore, it takes a lot of time and memory space to go
one level deeper when n ≥ 8. Nevertheless, we can bring
the target configuration closer by expanding it. When all
the states that can be reached in 5 steps are treated as final,
the program can solve instances that require 12 moves.
The second improvement, called forward checking, com-
bines tabled search with Prolog style depth-first search. Af-
ter the remaining resource limit becomes 8, the program
switches from tabled search to Prolog style non-tabled
search, checking if a final state is reachable from the cur-
rent state. If no final state can be reached, then the current
state is failed. With this technique, the program can solve
instances that require 14 moves in five hours.
The third improvement, called state compression, com-
presses the two lists of pieces into two big integers. This
improvement makes it possible to generate states at deeper

levels, both forward from the initial configuration and
backward from the target configuration.
Further refinements are made by banning certain sequences
of moves. First, a face is not allowed to move consecu-
tively. Although tabling is able to deal with looping, it
is a waste to generate the same state again. Second, a
symmetry-breaking rule is enforced that imposes an order
on the consecutive moves of opposite faces. These refine-
ments improve the speed by about 10%.

6 Conclusion

In this paper, we present three example solutions using the
planner module of Picat. Since users of the module only
need to specify conditions on the final states and the set of
actions, and call one of the predicates of the module on an
initial state to find a plan, the planner module simplifies
modeling of planning problems. The experimental results
show that the tabling approach to planning is promising.
The programs for 15-puzzle and Klotski are very efficient.
The Rubik’s cube program has succeeded in solving in-
stances that require 14 or fewer moves. We believe that the
program can be used to solve hard instances on a computer
with a large amount of memory.
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