
Translating Constraint Handling Rules into

Action Rules

Neng-Fa Zhou1, Tom Schrijvers2? and Bart Demoen2

1 Department of Computer & Information Science
CUNY Brookly College & Graduate Center

zhou@csi.brooklyn.cuny.edu
2 Department of Computer Science

K.U.Leuven, Belgium
{toms,bmd}@cs.kuleuven.be

Abstract. CHR is a popular high-level language for implementing con-
straint solvers and other general purpose applications. It has a well-
established operational semantics and quite a number of different imple-
mentations, prominently in Prolog. However, there is still much room
for exploring the compilation of CHR to Prolog. Nearly all implementa-
tions rely on attributed variables. In this paper, we explore a different
implementation target for CHR: B-Prolog’s Action Rules (ARs). As a
rule-based language, it is a good match for particular aspects of CHR.
However, the strict adherence to CHR’s refined operational semantics
poses some difficulty. We report on our work in progress: a novel compi-
lation schema, required changes to the AR language and the preliminary
benchmarks and experiences.

1 Introduction

Constraint Handling Rules (CHR) [6] is a rule-based programming language
commonly embedded in a host language. It is a powerful yet relatively simple
programming language that combines elements of Constraint (Logic) Program-
ming (CLP) and rule-based languages. CHR’s is intended as a language for
implementing user-defined application-tailored constraint solvers, but it is also
used as a general programming language.

Several implementations of CHR exist and most are embedded in Prolog [8,
10, 13] and HAL [3, 9]. CHR implementations for Java [1, 16] and Haskell [15]
exist as well. The implementation [8] in SICStus Prolog is generally considered
the reference implementation because it is historically the first full-fledged CHR
system. It implements an efficient compilation schema in terms of attributed
variables. More recently, the formulation of the refined operational semantics of
CHR [4] has captured the essentials of the reference implementation on a more
formal level.

AR (Action Rules) is a rule-based event-handling language originally de-
signed for programming constraint propagation [17]. It has been employed in

? Research Assistant of the fund for Scientific Research - Flanders (Belgium)(F.W.O.
- Vlaanderen)

the implementations of several highly efficient constraint solvers. There are two
major differences between AR and CHR: (1) CHR allows multi-headed rules
while AR only accepts single-headed rules; and (2) unlike in CHR where primi-
tive delay conditions are hidden in heads and guards of rules, all primitive delay
conditions must be explicit in AR. It is not obvious how CHR can be compiled
into AR, a seemingly lower-level language.

The goal of this paper is to explore a novel Prolog implementation of CHR in
terms of Action Rules. Traditionally, CHR is compiled to Prolog using attributed
variables [7], a low-level primitive for implementing constraint solvers. We argue
that because of its rule-based nature, higher level of expressivity, Action Rules
may provide a fair alternative compilation target. In our exploration we hope to
assess this claim and gain new insights into the efficient compilation of CHR.

The rest of this paper is structured as follows. In the next section, we provide
a brief overview of CHR-related concepts that are important for this paper.
Subsequently, in Section 3 we introduce the Action Rules language. The novel
compilation schema from CHR to AR is presented in two steps. Firstly, in Section
4, as basic compilation schema is presented. Secondly, a number of optimizations
to this basic schema are sketched in Section 5. We report on a preliminary
experimental evaluation in Section 6. Finally, in Section 7 we summarize and
discuss our experiences.

There is a companion technical report [14] for this paper, that contains more
elaborate explanation, full compilation schemas and optimizations, which we
could not include in this text for lack of space.

2 Constraint Handling Rules

We assume the reader to be already familiar with the general aspects of the CHR
language, its syntax and operational semantics.

The compilation schema we will present, implements the refined operational
semantics [4], which is the de facto standard operational semantics of CHR
implemented by all major CHR systems.

An important notation in the refined semantics, is the occurrence of a con-
straint symbol and the order of occurrences. The order is textual following the
rules, and in a head it is from left to right, except for the simpagation rule, where
occurrences to the right of the \ comes before the occurrences to the left.

The refined semantics follows a depth first execution strategy. One constraint
is activated at a time and for this constraint the occurrences are visited in order.
At each occurrence, the corresponding rule is attempted. If the rule succeeds,
execution of the active constraint is temporarily suspended, in favor of depth
first execution of the rule body. For further details we refer to [4].

3 AR: Action Rules

The AR (Action Rules) language is designed to facilitate the specification of
event-driven functionality needed by applications such as constraint propagators

2

and graphical user interfaces where interactions of multiple entities are essential
[17]. It has been used to implement the efficient finite-domain and finite-set
domain solvers in B-Prolog.

An action rule takes the following form: “H, G, {E}=>B” where H (called
the head) is an atomic formula that represents a pattern for agents, G (called the
guard) is a conjunction of conditions on the agents, E (called event patterns) is
a non-empty disjunction of patterns for events that can activate the agents, and
B (called action) is a sequence of arbitrary subgoals. An action rule degenerates
into a commitment rule if E together with the enclosing braces are missing. In
general, a predicate can be defined with multiple action rules. For the sake of
simplicity, we assume in this paper that each predicate is defined with only one
action rule possibly followed by a sequence of commitment rules.

For this paper, we are interested in the following event patterns:

– generated: After an agent is generated but before it is suspended for the
first time. The sole purpose of this event pattern is to make it possible to
specify preprocessing and constraint propagation actions in one rule.

– ins(X): when the variable X is instantiated.
– event(X, T): the general form of user-defined events, where X is a variable,

called a channel, and T is a Prolog term, called an event object.

In general, an action rule may specify several event patterns such as ins patterns
on several variables.

For an agent, a rule is applicable to it if the agent matches the head of the
rule and the guard is satisfied. When an agent is created, the system checks if the
action rule in its predicate is applicable to it.3 If so, the agent will be suspended
until it is activated by one of the events specified in the rule. Whenever the
agent is activated by an event, the condition of the action rule is tested again.
If it is met, the action is executed. The agent does not vanish after the action
is executed, but instead sleeps until it is activated again. There is no primitive
for killing agents explicitly. An agent vanishes only when a commitment rule is
applied to it.

Events are posted though a channel to agents by the system or by the user
program. The built-in primitive post event(C, T) posts a general event to the
agents connected to C, where C is a channel.The activated agents are first con-
nected to the active chain of agents and are then executed one at a time. There-
fore, agents are activated in a breadth-first fasion. The second argument can be
omitted if no information needs to be transmitted to the activated agents.

There is no primitive for killing agents explicitly. As described above, an agent
never disappears as long as action rules are applied to it. An agent vanishes only
when a commitment rule is applied to it. Consider the following example.

p(X,Flag), var(Flag),

{event(X,O)}

3 Since one-directional matching rather than full-unification is used to search for an
applicable rule and only tests are allowed in the guard, the agent will remain the
same after an applicable rule is found.

3

=>

write(O),Flag=1.

p(X,Flag) => true.

An agent defined here can only handle one event posting. After it handles an
event, it binds the variable Flag. So, when a second event is posted, the action
rule is no longer applicable and thus the commitment rule after it will be selected.

One question arises here: what happens if there will never be another event
on X? In this case, the agent will stay forever. If we want to kill the agent
immediately after it is activated once, we have to define it as follows:

p(X,Flag), var(Flag),

{event(X,O),ins(Flag)}

=>

write(O),Flag=1.

p(X,Flag) => true.

In this way, the agent will be activated again after Flag is bound to 1, and be
killed after the failure of the test var(Flag).

4 The Basic Translation Schema

This section gives the general schema for translating CHR rules into AR rules.
We focus on translating double-headed CHR rules. For single headed rules, a
head constraint is treated as the partner of itself (discussed in Subsection 4.4),
and rules with more than two constraint patterns in the head are translated to
double-headed rule (discussed in Subsection 4.5) before translating them into
AR rules.

4.1 Preparation

Without loss of generality we assume that all rules in the given CHR program
have been transformed into the head normal form [9] where all matching opera-
tions are encoded explicitly in the guards of the rules. Hence, all the arguments
of the constraint patterns in the program are unique variables.

For each constraint p(X), an event of the following form is posted when the
constraint is added into the store and when any variable in it is instantiated:

constr(Cno, Alive, History,X)

where Cno is a unique identifier of the constraint, Alive is a logic variable, called
a status variable, used to indicate aliveness of the constraint (the variable is free
if the constraint is alive and is bound to 0 if it has been removed from the store),
and History is the firing history of propagation rules in which the constraint
is involved. The data structure for the history is immaterial at this moment: it
could very well be an open-ended list. We need the following primitives:

– gen constr id(Cno): Generates a new identifier Cno. The nature of the
identifier is immaterial; an integer is used in our implementation.

4

– not in history(History, PartnerNo, RuleNo):
– add to history(History, PartnerNo, RuleNo): Let History be the history

associted with a constraint. The primitive not in history succeeds if the
tuple (PartnerNo, RuleNo) is not included in History, and the primitive
add to history adds the tuple (PartnerNo, RuleNo) into History.

For each occurrence of a constraint symbol in the heads, we use a unique
identifier, called an occurrence identifier, to denote it, which is composed of the
constraint symbol, the arity, and the number of the occurrence. For example.
the fourth occurrence of a constraint symbol p/1 has identifier p 1 4.

For each constraint symbol, we define two lists of occurrence identifiers: The
primal occurrence list contains the occurrence identifiers of that symbol and the
partner occurrence list contains the identifiers of the partner occurrences. The
two lists overlap if there is a rule with two identical constraint symbols in the
head. The ordering of primal occurrences is not important, but the occurrence
identifiers in the partner list must be in the order specified by the refined oper-
ational semantics.

For each occurrence, a channel is used for posting and receiving events. For
each instance in the store of the corresponding constraint symbol, there is an
agent attached to the channel. We need the following primitive:

– get channel(Id, Channel): retrieves the channel for the occurrence with the
identifier Id.4

A channel is assigned to an identifier when get channel is called on it for the
first time.

4.2 The basic schema for two-headed rules

There is one Prolog clause generated for each constraint symbol. Let p/n be a
constraint symbol with the primal occurrence list [P1, . . . , Pk] and the partner
occurrence list [Q1, . . . , Qm]. Our basic schema generates the following Prolog
clause for the symbol:

p(X) : −
gen constr id(Cno),
Constr = constr(Cno, Alive, History,X),
get channel(P1, ChP1), . . .,get channel(Pk, ChPk),
get channel(Q1, ChQ1), . . .,get channel(Qm, ChQm),
agent P1(ChP1, Cno, Alive, History,X),
. . .
agent Pk(ChPk, Cno, Alive, History,X),
post p n(ChQ1, . . . , ChQm, Alive, Constr,X).

4 The channel of an occurrence is an attributed variable stored as a global heap vari-
able. In B-Prolog, the built-in global heap get(Name,Value), which is the same as
b getval(Name,Value) in h-Prolog and SWI-Prolog, is used to access global heap
variables.

5

For each occurrence identifier in the primal and partner occurrence lists, there
is a call of get channel, which gets the channel for the occurrence. For each
primal occurrence Pi (i = 1, . . . , k), there is a call named agent Pi, which creates
an agent for waiting for future partner constraints. The last call in the clause
post p n posts the constraint p(X) to the channels of the partner occurrences
to initiate search for partners of p(X).

Let the identifier of the rule in which Pi occurs be RuleId, the guard and
body of the rule be G and B, respectively. If the rule is a propagation rule, then
the agent for the occurrence Pi is defined as follows:

agent Pi(Ch, Cno, Alive, History,X),
var(Alive),
{event(Ch, Q),ins(Alive)}

=>
Q = constr(CnoQ, AliveQ, HistoryQ, Y),
(Cno\==CnoQ,
var(AliveQ)
not in history(History, CnoQ, RuleId),
not in history(HistoryQ, Cno, RuleId),
G −>

add to history(History, CnoQ, RuleId),
add to history(HistoryQ, Cno, RuleId),
B

;
true).

agent Pi(, , , , X) =>true.

When the agent receives an event constr(CnoQ, AliveQ, HistoryQ, Y), it checks
the following: (1) the constraint represented by the event is different from the
constraint represented by this agent (Cno\==CnoQ); (2) the constraint repre-
sented by the event is alive (var(AliveQ)); (3) the rule RuleId has never been
applied on (Cno, CnoQ) or (CnoQ, Cno); and (4) the guard G is satisfied. The
body is executed when all these four conditions are satisfied. The histories asso-
ciated with these two constraints are updated to record this application before
the body is executed. Notice that the agent also watches the ins(Alive) event.
When the constrain represented by the agent is removed from the store (Alive
is bound to 0), the agent will be killed.

If the rule in which Pi occurs is a simplification rule, then the following action
rule is generated for Pi:

agent Pi(Ch, Cno, Alive, History,X),
var(Alive),
{event(Ch, Q),ins(Alive)}

=>
Q = constr(CnoQ, AliveQ, HistoryQ, Y),
(Cno\==CnoQ,
var(AliveQ)

6

G −>
Alive = 0, AliveQ = 0,
B

;
true).

The status variables Alive and AliveQ are set to 0 to indicate that the con-
straints represented by the agent and the event have been removed from the
store. If the rule is a simpagation rule, then only Alive or AliveQ is set to 0
depending on whether Pi occurs to the left or right of \.

After all the agents agent P1, . . ., agent Pk are created, an agent named
post p n is created to initiate search for partners.

post p n(ChQ1, . . . , ChQm, Alive, Constr,X)
var(Alive),
{generated,ins(Alive),ins(X)}

=>
post event(ChQ1, Constr),
. . .
post event(ChQm, Constr).

post p n(ChQ1, . . . , ChQm, , , X) =>true.

When the constraint p(X) is created (as indicated by the event pattern generated)
or when any variable in it is instantiated (as indicated by the event pattern
ins(X)), the event representing the constraint Constr is posted to the channels
of the partner occurrences to initiate search for partners. The refined semantics
is preserved by posting the constraint to the channels of the occurrences in the
specified order.

4.3 An Example

Consider the following CHR rule:

prime(Y) \ prime(X) <=> 0 is X mod Y | true.

where prime(X) is numbered 1 and prime(Y) is numbered 2. The following
shows the generated code.

prime(X) :-

gen_constr_id(Id),

Constr = constr(Id,Alive,History,X),

get_channel(prime_1_1,Ch1),

get_channel(prime_1_2,Ch2),

agent_prime_1_1(Ch1,Id,Alive,History,X),

agent_prime_1_2(Ch2,Id,Alive,History,X),

post_prime_1(Ch1,Ch2,Alive,Constr,X).

7

agent_prime_1_1(Ch,Id,Alive,History,X), var(Alive),

{event(Ch,Constr), ins(Alive)} =>

Constr=constr(IdQ,AliveQ,HistoryQ,Y),

(Id\==IdQ,

var(AliveQ),

0 is X mod Y ->

Alive = 0

;

true

).

agent_prime_1_1(_,_,_,_,_) => true.

agent_prime_1_2(Ch,Id,Alive,History,Y), var(Alive),

{event(Ch,Constr), ins(Alive)} =>

Constr=constr(IdQ,AliveQ,HistoryQ,X),

(Id\==IdQ,

var(AliveQ),

0 is X mod Y ->

AliveQ = 0

;

true

).

agent_prime_1_2(_,_,_,_,_) => true.

post_prime_1(Ch1,Ch2,Alive,Constr,X), var(Alive),

{generated, ins(Alive), ins(X)} =>

post_event(Ch1,Constr),

post_event(Ch2,Constr).

post_prime_1(_,_,_,_,_) => true.

4.4 Single-headed rules

For a single-headed CHR rule with the constraint symbol p/n in the head, a
constraint of p/n does not need to wait for a partner constraint to trigger the
rule. Let Pi be the occurrence identifier of the head. Each time a constraint of
p/n is added into the store, an agent defined below is created:

agent Pi(PrivateCh, Cno, Alive, History,X),
var(Alive),
{event(PrivateCh,),ins(Alive)}

=> . . .
agent Pi(, , , , X) =>true.

where the body of the action rule encodes the guard and body of the CHR rule.
The agent is not activated by the posting of a partner constraint, but by the
posting of the constraint itself. The event pattern event(PrivateCh,) means
that no information from any event is used. By using a separate channel for

8

each occurrence of p/n, we enforce as before the ordering of the rules in the
refined semantics. However, now we have to use a private channel (one for each
constraint instance rather than a global one) to enforce the depth-first execution
order of the refined semantics. Otherwise we would break our assumption that
a constraint only features as its own partner for a single-headed rule. The result
would be a kind of breadth-first execution order.

Consider the following CHR program, (partially) implementing boolean and/3

and not/2 constraints:

and(X,X,Z) <=> Z = X.

not(X,Y) \ and(X,Y,Z) <=> Z = 0.

The following shows the generated code for and/3.

and(X,Y,Z) :-

gen_constr_id(Cno),

Constr = constr(Cno,Alive,History,X,Y,Z),

get_channel(and_3_2,PublicCh2),

get_channel(not_2_1,ChNot),

agent_and_3_1(PrivateCh1,Cno,Alive,History,X,Y,Z),

agent_and_3_2(PublicCh2,Cno,Alive,History,X,Y,Z),

post_and_3(PrivateCh1,ChNot,Alive,Constr,X,Y,Z).

agent_and_3_1(PrivateCh1,Cno,Alive,History,X,Y,Z), var(Alive),

{event(PrivateCh1,_), ins(Alive)} =>

(X == Y ->

Alive = 0,

Z = X

;

true

).

agent_and_3_1(_,_,_,_,_,_,_) => true.

agent_and_3_2(PublicCh2,Cno,Alive,History,X,Y,Z), var(Alive),

{event(PublicCh2,Constr), ins(Alive)} =>

Constr=constr(Cno,AliveNot,HistoryNot,XNot,YNot),

(Cno\==CnoNot,

var(AliveNot),

X == XNot,

Y == YNot

->

Alive = 0,

Z = 0

;

true

).

agent_and_3_2(_,_,_,_,_,_,_) => true.

9

post_and_3(PrivateCh1,ChNot,Alive,Constr,X,Y,Z), var(Alive),

{generated, ins(Alive), ins(X), ins(Y), ins(Z)} =>

post_event(PrivateCh1,Constr),

post_event(ChNot,Constr).

post_and_3(_,_,_,_,_,_,_) => true.

4.5 Multi-headed rules

For rules with more than two constraint patterns in the heads, we apply a simi-
lar binarization technique as in the famous RETE algorithm [5] for production
systems. This technique makes the intermediate joins of partner constraints man-
ifest in temporary constraints.

Conceptually for a rule with n ≥ 2 constraint patterns:

p1(X1), . . . , pn(Xn)==> G | B.

We compile it into (n−1) two-headed rules with (n−1) new constraint symbols
p1...j where 2 ≤ j ≤ (n − 1):

p1(X1), p2(X2)==> p1..2(X1, X2).
p1..2(X1, X2), p3(X3)==> p1..3(X1, X2, X3).
...
p1..(n−1)(X1, . . . , X(n−1)), pn(Xn)==> p1..n(X1, . . . , Xn).

It has often been claimed informally that the correct binarization of CHR
rules can be expressed trivially as the above source-to-source transformation is
correct. In effect, early implementations of CHR did not support any n-headed
rules where n > 2, partially for that reason.

In reality, the binarization is not as simple as that, and we believe that it
cannot be expressed fully as a source-to-source transformation. A number of
issues arise that have to be dealt with at a lower level.

Firstly, no head constraint can be used twice in the matching against the con-
straint patterns in the original CHR rule. To ensure this, we let each temporary
constraint carry the identifiers of the precedence constraints from which it is ob-
tained. Each time before we fire the rule p1..j(X1, . . . , Xj), pj+1(Xj+1)==> ...,
we check if pj+1(Xj+1) occurs in the precedence constraints that led to the
generation of p1..j(X1, . . . , Xj). If so, the rule cannot be fired.

Secondly, the following relationship among the status variables must be main-
tained: whenever a precedence constraint is removed from the store, the tem-
porary constraints created from it must be removed as well. For this reason we
let each temporary constraint carry in a similar fashion the status variables of
the precedence constraints. On an ins event of any of these status variables the
agents for the temporary constraints are removed.

Thirdly, for simplification and simpagation rules, it should be possible at the
end of the join chain, before executing the body of the original rule, to remove
the original precedence constraints. For this purpose, the status variables of the
precedence constraints must be carried by the temporary constraints. Luckily,
this is already the case for the previous issue.

10

Finally, the temporary constraints should be properly synchronized with their
precedence constraints. If a variable appearing in a precedence constraint is
instantiated, any temporary constraint that caries that variable should not fire its
event, before the events for the previous occurrences of the precedence constraint
do. Our solution is to not fire events for temporary constraints upon ins events
of the temporary constraints’ variables. Instead every precedence constraint has
a private channel for each multi-headed occurrence. This channel is carried by
the temporary constraints. Upon an ins event for the precedence constraint,
first the usual events are posted for the preceding occurrences before an event
is posted to this private channel. The temporary constraint react on this event
by firing their usual events.

Consider the following articifial CHR program:

a(X) \ b(X), c(X) <=> X = 42.

The following shows the generated code for a/1 and the temporary constraint
temp12/8.

a(X) :-

gen_constr_id(Cno),

Constr = constr(Cno,Alive,History,X,ChTemp),

get_channel(a_1_1,Ch1),

get_channel(b_1_1,ChB),

agent_a_1_1(Ch1,Cno,Alive,History,X,ChTemp),

post_a_1(ChB,ChTemp,Alive,Constr,X,Y,Z).

agent_a_1_1(Ch,Cno,Alive,History,X,ChTemp), var(Alive),

{event(Ch,Constr), ins(Alive)} =>

Constr=constr(CnoB,AliveB,HistoryB,XB,ChTempB),

(Cno\==CnoB,

var(AliveB),

not_in_history(History,CnoB,r1),

not_in_history(HistoryB,Cno,r1)

->

add_to_history(History,CnoB,r1),

add_to_history(HistoryB,Cno,r1),

temp12(X,XB,Cno,CnoB,Alive,AliveB,ChTemp,ChTempB)

;

true

).

agent_a_1_1(_,_,_,_,_,_) => true.

post_a_1(ChB,ChTemp,Alive,Constr,X), var(Alive),

{generated, ins(Alive), ins(X)} =>

post_event(ChB,Constr),

post_event(ChTemp,Constr).

post_a_1(_,_,_,_,_) => true.

11

temp12(XA,XB,CnoA,CnoB,AliveA,AliveB,ChTempA,ChTempB) :-

gen_constr_id(Cno),

Constr = constr(Cno,Alive,History,XA,XB,...),

get_channel(temp12_1,Ch1),

get_channel(c_1_1,ChC),

agent_temp12_8_1(Ch1,Cno,Alive,History,XA,XB,...),

post_temp12_8(ChC,Alive,Constr,AliveA,AliveB,ChTempA,ChTempB).

agent_temp12_8_1(Ch1,Cno,Alive,History,XA,XB,CnoA,CnoB,AliveA,AliveB,ChTempA,ChTempB),

var(Alive),var(AliveA),var(AliveB),

{ins(Alive),ins(AliveA),ins(AliveB),event(CH1,Constr)} =>

Constr=constr(CnoC,AliveC,HistoryC,XC,ChTempC),

(Cno\==CnoC, CnoA\==CnoC, CnoB\==CnoC,

var(AliveB),

XA==XB, XB==XC

->

AliveB=0, AliveC=0,

XA = 42

;

true

).

agent_temp12_8_1(_,_,_,_,_,_,_,_,_,_,_,_) => true.

post_temp12_8(ChC,Alive,Constr,AliveA,AliveB,ChTempA,ChTempB),

var(Alive),var(AliveA),var(AliveB),

{generated,ins(Alive),ins(AliveA),ins(AliveB),

event(ChTempA,ChTempB} =>

post_event(ChC,Constr).

post_temp12_8(_,_,_,_,_,_,_) => true.

5 Optimizations

The above compilation schema is quite basic in a number of ways. This section
discusses a few optimizations that greatly improve the efficiency. We focus on
significant adaptations of existing optimizations [9, 12] for ARs.

Indexing. In our basic schema the public channels used for finding partner con-
straints have no selectivity at all: all constraints with the appropriate constraint
symbol are reached. Indexing greatly reduces the selectivity of partner lookups.
In our AR schema we associate an index with a particular partner constraint
lookup. In addition to the general channel for the lookup, one or more index
channels may be provided. An index channel only reaches a constraint that has
a particular variable or a particular term in some argument position. The occur-
rence agent of the constraint simply watches the additional index channels too.
The post agent updates the constraint’s index channels upon instantiation, and
it looks for partner constraints through index channels if they are available.

12

If multiple index channels are available, these are combined using the new
post_event(Index1/\.../\Indexn,Event) feature, that only posts the event
to agents that are attached to all of the channels Index1,...,Indexn.

Single-headed rules. We can merge the agents of multiple consecutive single-
headed rules and their corresponding private channels into a single agent and
a single private channel. The bodies of the rules are merged appropriately in a
single body. Subsequent bodies of a propagation rule are put in conjunction (i.e.
any continuation), and of simplification rules are put in the else-branch (i.e. fail
continuation) of that body.

For a constraint symbol that is defined by only single-headed rules, no private
channel is needed at all to control the ordering.

Never-triggering constraints. A constraint symbol whose instances do not trig-

ger, e.g. because they are fully instantiated when called, does not require its
agents to watch ins/1 events of the arguments.

6 Evaluation

We have written an automatic translator from CHR to Action Rules, following
the above basic compilation schema. This compiler is evaluated on a represen-
tative set of benchmarks from [11]. In addition, to get a good view on the at-
tainable efficiency, we have further optimized the generated code of the smallest
benchmarks by hand. The compiler, benchmarks and hand-optimize code are all
available from the webpage http://www.probp.com/chr/.

As a reference for comparison, we take the K.U.Leuven CHR system [13] in
SWI-Prolog. This is currently the most optimized CHR-system for Prolog. Tabel
1 lists the timings in milliseconds, obtained on a Pentium 4 2 GHz.

Benchmarks B-Prolog SWI-Prolog
Basic Compiler Hand-Optimized K.U.Leuven CHR

fib (22) 38,333 (*) 246 3,210
fulladder (6000) 1,050 - 340
leq (50) 82,823 138 3,010
leq2 (50) 84,407 145 3,870
primes (2500) 3,049 1,350 6,990
wfs (1000) 11,783 - 2,920
zebra (10) 4,273 621 4,580

Table 1. Benchmark Timings

In order to interpret the figures in Tabel 1 correctly, one must take into
account that B-Prolog is on average about 5 times faster than SWI-Prolog.

13

Unsurprisingly, the basic schema’s performance is not so good. However, the
hand-optimized code shows that drastic improvements are possible. In fact, such
improvements are capable of considerably outperforming the K.U.Leuven CHR
system in its current form. This suggests a worthwhile set of optimizations that
can be generalized to other compilation schema, such as that of the K.U.Leuven
CHR system.

In (*) we use the consulted rather than the compiled benchmark, because the
garbage collector is not activated in the latter, causing a serious slowdown. We
expect this to be fixed in a new release of B-Prolog. Furthermore, we cannot re-
liably experiment with multi-headed rules that involve Reactivate transitions
yet. The Action Rules semantics currently allows for a delay between an in-
stantiation and its corresponding ins/1 event, where other code can be run in
between that is out of order with respect to CHR’s refined semantics. We will
also address this issue in a future version.

7 Conclusion

In this paper we have presented a novel schema for compiling CHR to Action
Rules. On the one hand, the AR schema has some elegance over the attributed
variables schema in the expression as it allows some loops to be expressed im-
plicitly, just like CHR. On the other hand, we have experienced some difficulty
with strictly following the refined operational semantics of CHR; it is not such
a good match for the operational semantics of AR.

Our initial experimental results show that the basic performance is rather
bad, but hand-optimizations give very encouraging results and suggest worth-
while optimizations for all CHR systems. Another important result of our schema
is that it shows how to properly binarize multi-headed rules, and that this is
non-obvious. This shows the advantages of the attributed variables schema over
the RETE-based approach. In [?] it was already shown that RETE’s time and
space behavior is worse than that of LEAPS, by which the attributed variables
implementation of CHR was inspired.

A current limitation of the Action Rules schema is that it does not fully
support an extension of CHR, called CHR∨ [2], which allows disjunctions in
the bodies of rules. An Action Rule behaves as if the body is contained inside
the ISO-Prolog once/1 built-in: after executing the body, any remaining choice
points created during the execution are pruned.

In future work, we will extend and automate the proposed optimizations. In
particular, we will focus on Action Rules specific optimizations. A hybrid com-
pilation schema seems another worthwhile topic for further research: selecting
the most efficient parts of the attributed variables and Action Rules schemas,
possibly based on properties of the program being compiled. This could also
allow us to lift the current restriction of the Action Rule schema and fully sup-
port CHR∨. Finally, we will investigate were the strict adherence to the refined
operational semantics can be lifted without harm.

14

References

1. Slim Abdennadher, Ekkerhard Krämer, Matthias Saft, and Matthias Schmauss.
JACK: A Java Constraint Kit. In Proceedings of the International Workshop on
Functional and (Constraint) Logic Programming, Kiel, Kiel, Germany, September
2001.

2. Slim Abdennadher and Heribert Schütz. CHR∨: a flexible query language. In
FQAS ’98: Proceedings of the Third International Conference on Flexible Query
Answering Systems, pages 1–14, London, UK, 1998. Springer-Verlag.

3. Bart Demoen, Maria Garćıa de la Banda, Warwick Harvey, Kim Marriott, and
Peter J. Stuckey. An Overview of HAL. In Joxan Jaffar, editor, CP’99: Proceed-
ings of the 5th International Conference on Principles and Practice of Constraint
Programming, volume 1713 of Lecture Notes in Computer Science, pages 174–188,
Alexandria, Virginia, USA, 1999. Springer Verlag.

4. Gregory J. Duck, Peter J. Stuckey, Maŕıa Garćıa de la Banda, and Christian
Holzbaur. The Refined Operational Semantics of Constraint Handling Rules. In
ICLP’04: Proceedings of the 20th International Conference on Logic Programming,
volume 3132 of Lecture Notes in Computer Science, pages 90–104, St-Malo, France,
September 2004. Springer Verlag.

5. Charles L. Forgy. RETE: A Fast Algorithm for the Many Pattern/Many Object
Pattern Match Problem. Artificial Intelligence, 19(1):17–37, 1982.

6. Thom Frühwirth. Theory and practice of constraint handling rules. Journal of
Logic Programming, 37(1–3):95–138, October 1998.

7. Christian Holzbaur. Metastructures vs. Attributed Variables in the Context of
Extensible Unification. Technical Report TR-92-23, Austrian Research Institute
for Artificial Intelligence, Vienna, Austria, 1992.

8. Christian Holzbaur and Thom Frühwirth. A Prolog Constraint Handling Rules
Compiler and Runtime System. Special Issue Journal of Applied Artificial Intelli-
gence on Constraint Handling Rules, 14(4), April 2000.

9. Christian Holzbaur, Maŕıa Garćıa de la Banda, Peter J. Stuckey, and Gregory J.
Duck. Optimizing Compilation of Constraint Handling Rules in HAL. Theory
and Practice of Logic Programming: Special Issue on Constraint Handling Rules,
5(Issue 4 & 5):503–531, 2005.

10. IC-Parc. ECLiPSe. http://www.icparc.ic.ac.uk/eclipse/.
11. Tom Schrijvers. A Collection of Assorted CHR Benchmarks, 2005.

http://www.cs.kuleuven.be/˜toms/Research/CHR/.
12. Tom Schrijvers. Analyses, optimizations and extensions of Constraint Handling

Rules. Phd, Department of Computer Science, K.U.Leuven, Leuven, Belgium,
June 2005. xxiv+210 pages.

13. Tom Schrijvers and Bart Demoen. The K.U.Leuven CHR system: Implementation
and application. In Thom Frühwirth and Marc Meister, editors, First Workshop
on Constraint Handling Rules: Selected Contributions, pages 1–5, Ulm, Germany,
May 2004.

14. Tom Schrijvers, Neng-Fa Zhou, and Thom Frühwirth. The compilation schema for
translating chr into action rules. Report cw, K.U.Leuven, Department of Computer
Science, 2006. Available shortly.

15. Peter J. Stuckey and Martin Sulzmann. A Theory of Overloading. ACM Transa-
tions on Programming Languages and Systems, 2005. To appear.

16. Armin Wolf. Adaptive Constraint Handling with CHR in Java. In CP’01: Proceed-
ings of the 7th International Conference on Principles and Practice of Constraint
Programming, Lecture Notes in Computer Science 2239, page 256. Springer Verlag,
January 2001.

15

17. Neng-Fa Zhou. Programming finite-domain constraint propagators in action rules.
To appear in Theory and Practice of Logic Programming (TPLP), 2006.

16

