Building Java Applets by Using DJ
— A Java-based Constraint Language

Neng-Fa Zhou
Department of Computer and Information Science
Brooklyn College
The City University of New York
2900 Bedford Avenue, Brooklyn, New York 11210-2889
zhou@sci.brooklyn.cuny.edu

Abstract

DJ (Declarative Java) is an extension of Java that
supports constraint programming. On the one hand, DJ
can serve as a high-level specification language for Java
applets. To construct a Graphic User Interface (GUI)
with DJ, the users only need to specify the components
that compose the GUI and the relationships among the
components by using constraints. On the other hand,
DJ, as a constraint language, improves the current con-
straint languages in that problems and solutions can be
described in the same language. In addition, since DJ
s a compiling language that uses Java as the object lan-
guage for compilation, solutions can be distributed on
the WWW as Java applets. In this paper, we present
DJ by examples, aiming at illustrating the power and
programming methodology of DJ.

1 Introduction

The World Wide Web has become a great network
for disseminating various kinds of documents. Web
documents used to be static and to contain only text,
but now many Web documents are dynamic, and con-
tain not only text but also images, video, audio, graph-
ics and animation. Java is a powerful language for pro-
gramming interactive, dynamic, and content-rich Web
documents as Java applets. Nevertheless, developing
GUIs including applets in Java is a time-consuming
process. The users have to, among other things, choose
appropriate layout managers and sometimes have to
determine the sizes and positions of graphic compo-
nents. There are many visual tools, such as Java
Studio™, for creating Java programs without the need
to write any code. The users can manipulate graphic

components directly by using mice in these tools. How-
ever, it becomes hard to achieve satisfactory accuracy
when the number of components becomes large and the
constraints on the layout become complicated.

DJ is a language that amalgamates Java and Con-
straint Programming. DJ, as an extension of Java, sig-
nificantly simplifies the process of constructing GUIs
and Java applets. The users only need to specify the
components that compose a GUI and the relationships
among the components by using constraints. The lay-
out for the components is automatically determined by
the system. As a constraint programming language,
DJ improves the current constraint languages in that
problems and solutions can be described in the same
language. And most importantly, since DJ is a compil-
ing language that adopts Java as the object language,
results can be distributed on the World Wide Web as
Java applets and/or included in other larger applica-
tions.

A compiler for DJ has been implemented in B-
Prolog [8], a constraint logic programming system. For
a DJ program, the compiler first extracts a constraint
satisfaction problem (CSP) from the program, and
then invokes the constraint solver to solve the prob-
lem and determines the attribute values for the com-
ponents. It finally generates a Java program and an
HTML file from the original DJ program and the solu-
tion obtained by the constraint solver.

In this paper, we describe the DJ language through
examples. The readers are assumed to be familiar with
Java [1] and constraint programming concepts [4, 5,
6]. The formal specification of the language and more
example programs are available from DJ’s Web page

[9]-

2 A Brief Introduction to DJ

DJ is an extension of Java that supports constraint
programming. It retains the object-oriented feature of
Java. A DJ program consists of several classes and
optionally several constraint definitions. In addition to
field and method declarations, a class can also include
dj-field declarations, constraints, and actions.

ClassMemberDeclaration::-
FieldDeclaration
MethodDeclaration
DJFieldDeclaration
Constraint
Action

Dj-field declarations declare the graphic components
that compose the class and the attributes of the class.
A component is an instance of some base class or user-
defined class. Constraints are relations among compo-
nents or component attributes. Unlike member vari-
ables in Java that can be updated, dj-fields are single-
assignment variables whose values are determined au-
tomatically by the system based on the constraints
among them. An action associated with a component
specifies the action to take when some event happens
to the component.

The extension to Java’s syntax is kept as small as
possible. A constraint has similar syntax to that of a
conditional expression in Java, and a constraint defini-
tion is like a method declaration except that the body
is a sequence of constraints. Because of this similarity,
users who know Java and constraint programming can
master the new language in a very short time. The
users can never get confused about constraints and
statements because they appear in different contexts.

The DJ system is an interpreter that takes a DJ
program and the name of the main class in the pro-
gram. No class in the program needs to be declared
as the main class when the program is written. The
interpreter creates an instance of the main class and
determines the attribute values of the components that
satisfy the constraints. It finally generates a Java ap-
plet that displays the components.

Consider how to construct an applet that displays a
Hello World button. The following shows the code:

class HelloWorld {
dj Button bt{text=="Hello World!"};
}

The program consists of only one class called
HelloWorld. The line starting with dj is called a dj-
field declaration. 1t declares a component called bt, an
instance of the base class Button. The expression in the

brackets after bt is called a constraint that constrains
the value of the text attribute of bt to be "Hello
World".

Dj-fields are single-assignment variables. Each dj-
field is the name for some particular object that is cre-
ated automatically when an instance of the encapsu-
lating class that owns the field is created. Unlike a
member variable in Java, a dj-field cannot be updated
and the object it refers to does not need to be created
by calling a constructor.

Button is a base class. All base classes are extended
classes of DJComponent, which has the following at-
tributes: x, y, width, height, and visible. The
attributes x and y specify the position, i.e., the xy-
coordinate of the left-upper corner, and the attributes
width and height specify the size of the component.
The attribute visible indicates whether the compo-
nent is visible or not. The default value for this at-
tribute is true. In addition to the attributes inherited
from DJComponent, Button has the following attributes
of its own: text, font, and color. In our example,
nothing is said about the color and font of the text,
and the size and position of the button in the main
panel. we can but do not have to give the values to
these attributes. The system will determine the at-
tribute values for us either by using the constraints we
provided or by using the default values.

Each user-defined class has four default attributes,
namely, x, y, width, and height, that specify the panel
or layout area for the components in the class. No
component can be laid outside this area.

We can separate the constraint on bt from the com-
ponent declaration in our first HelloWorld class and
write it as a member of the class as follows:

class HelloWorld {
dj Button bt;
bt.text=="Hello World!";
}

As the constraint is not inside the scope of the compo-
nent declaration, to refer to the text attribute of bt,
we have to write bt.text.

DJ retains the object-oriented feature of Java. By
using inheritance, we can rewrite our HelloWorld class
as follows:

class HelloWorld extends Button {
text=="Hello World!";

}

The attribute text is inherited from the super class
Button. Although the HelloWorld defined here has
the same state and behavior as our original class, the
two definitions are different. Let hw be a component
of HelloWorld declared in some class. If the original

definition is used, we refer to the size of the button
as hw.bt.size. In contrast, if the class defined by
using inheritance is used, we refer to the size of the
button as hw.size. The attribute size in HelloWorld
is inherited from its super class Button.

3 Drawing binary trees

This example illustrates how small components can
be combined to build larger ones. The following shows
the code for drawing the tree as depicted in Figure 1

(a):

class Tree {
dj Circle root, lc, rc;
dj Line 11,12;

sameSize ({root,lc,rc});
positionNodes(root,lc,rc);
11.pointl==root.center;
11.point2==lc.center;
12.pointl==root.center;
12.point2==rc.center;

}

constraint positionNodes(Circle root,
Circle 1lc, Circle rc){
root.centerX == (lc.centerX + rc.centerX)/2;
// symmetric

left(lc,rc);
lc.centerY == rc.centerY;
root.centerY == rc.centerY-50-rc.diameter;

(a) (%)

Fig.1 Binary trees.

The tree is composed of three circles and two lines.
The constraint sameSize is a built-in constraint that
takes an array of components and ensures the compo-
nents are of the same size. The argument of the con-
straint {root,lc,rc} is an anonymous array. Anony-
mous arrays are very useful for grouping components
and imposing some constraints on them.

The constraint positionNodes is a user-defined con-
straint. A constraint definition is similar in syntax to

a method declaration, but it starts with the keyword
constraint and its body is a sequence of constraints.
The constraint positionNodes ensures that the root is
located horizontally at the center of the two children
and vertically 50 pixels above the two children.

The four equality constraints in the end of the class
Tree ensure that line 11 connects the root and the left
child, and line 12 connects the root and the right child.

Now we are ready to combine three small trees to
build the bigger tree as depicted in Figure 1 (b). The
following shows the code:

class BigTree {
dj Tree t0,t1,t2;

t0.1c == tl.root;
t0.rc == t2.root;
left(t1,t2);

}

This big tree is made up of three small trees, t0, t1,
t2. The left child of t0 is the same as the root of t1,
and the right child of t0 is the same as the root of
t2. We see from this example that we can not only
constrain attributes, but also unify components. Two
components are unifiable if they belong to the same
class and each attribute in one component is unifiable
with its counterpart in the other component. The last
constraint left (t1,t2) is necessary because otherwise
t1 and t2 may overlap each other.

4 N-queen problem

DJ can be used not only to draw graphics and build
graphical user interfaces but also to solve constraint
satisfaction problems in general. In this example, we
consider how to describe the N-queen problem and dis-
play the solutions graphically.

Fig.2 A solution to the 8-queen problem.

The problem is described as follows: There are an N
by N chessboard and N queens. One is required to place
the queens on the chessboard such that no two queens
attack each other, i.e., no two queens can be placed on
the same row, the same column, and the same diagonal.

Figure 2 shows a solution to the 8-queen problem. The
following shows the code:

class Queens {
static public final int N = 8;

dj Square board[N] [N]{fill==false};

dj Image queens[N]{name=="queen.gif";
size==board[0] [0] .size};

dj int pos[N] in 0..N-1;

for (i in 0..N-1)
samePosition(queens[i] ,board[i] [pos[i]]);
notattack(pos,N);
grid(board) ;
}

constraint notattack(int[] pos,int N){
for (i in 0..N-2,j in i+1..N-1){
pos[i] !'= pos[j];
pos[i] !'= pos[jl+j-i;
pos[i] !'= pos[jl+i-j;

}

N is defined as a constant. The chessboard is repre-
sented as a two-dimensional array of unfilled squares
and the N queens are represented as an array of im-
ages. Every image has the same size as a grid square.
We also use an attribute array, called pos, to indicate
the positions of the queens. For each queen i, the ele-
ment pos[i] indicates the number of the row on which
the queen is placed.

The for constraint constrains the positions of the
images. In general, a for constraint takes the following
form:

for (Enumerator, ,Enumerator) Constraint;

where Enumerator is either a domain constraint in the
form of V in D or a relational constraint. Let Vars be
the set of variables appearing in all the enumerators.
The for constraint means that for each tuple of values
for Vars that satisfies the enumerators, Constraint
must be satisfied.

In our example, the for constraint has the following
meaning: For each queen i, the image queen[i] and
the square board[i] [pos[i]] must have the same po-
sition. Notice that indexes of arrays can be variables.
This is a powerful feature. Without this feature, we
would have to write the constraint as follows:

for (i in 0..N-1, j in 0..N-1, pos[i]==j)
samePosition(queens[i] ,board[i] [j]);

which is hard to read and inefficient since it generates
N square samePosition constraints.

The notattack constraint, which is a user-defined
one, ensures that no two queens attack each other. The
grid constraint constrains the layout for the board.
The signature for grid is as follows:

grid(DJComponent [J[] comps)

It takes a two-dimensional array of components and
ensures that the components are placed in a grid board.

5 Magic square

Magic square is another typical constraint satisfac-
tion problem. There is an N by N grid board. One is
required to assign each grid a different digit from 1 to N
such that all the rows, all the columns, and both of the
diagonals have the same total. This example illustrates
the usage of aggregation constraints.

L O D
[I o |

B
1
&
Fig.3 A solution to the 3 x 3 problem.

Figure 3 shows a solution of the 3 x 3 magic square
problem. The following shows the code:

class Cell {
dj Label 1b;
dj int value in 1..Magic.N*Magic.N;
1b.text == String(value);

}

class Magic {
public static final int N = 3;
dj Cell board[N][N];
dj int total;

for (i in 0..N-1) //columns
sum(board[i] [j].value, j in 0..N-1)==total;
for (j in 0..N-1) //rous
sum(board[i] [j].value,i in 0..N-1)==total;
sum(board[i] [i] .value, i in O..N-1)==total;
//left-upper-down diagonal
sum(board[i] [j].value, i in O..N-1,
j in 0..N-1, i+j==N-1)== total;
// left-bottom-up diagonal
alldifferent (array(board[i] [j].value,
i in 0..N-1,j in 0..N-1));
grid(board) ;

FEach grid square is a component of the class Cell,
which has a label, called 1b, and an integer attribute,
called value, whose domain is declared to be 1..N2.
The constraint 1b.text==String(value) ensures that
value is the same as 1b.text after it is converted to a
string.

The board is represented as a two-dimensional array
of cells. We use an integer attribute, called total, to
represent the sum.

The expressions sum(...) in the constraints are
called aggregation expressions. In general, an aggrega-
tion expression has the following form:

xxx (Exp,Enumerator, . . . ,Enumerator)

where XXX can be substituted by sum, min, or max. Ev-
ery variable in Exp must occur at least once in the
enumerators. For each tuple of values for the variables
that satisfy the enumerators, the Exp got a value. The
aggregation expression stands for the sum, minimum,
or maximum of all such values.

The two for constraints say that all the columns and
rows have the same sum total. The two aggregation
constraints say that the two diagonals have the same
sum.

The alldifferent constraint takes an array of vari-
ables of some type and ensures that all the variables
take different values. The argument is an anonymous
array built by using an array expression. In general,
an array expression has the following form:

array (Exp,Enumerator, . .. ,Enumerator)

where Exp is an expression. For each tuple of values for
the variables in the enumerators that satisfies the enu-
merators, Exp has a value. This expression represents
an array of all such values. The array expression in
our example converts a two-dimensional array of cells
into a one-dimensional array of integers.

6 Building a calculator

Up till now, all the applets we have built are static
in the sense that they do not respond to any events.
We now consider how to build a working calculator,
as depicted in Figure 4. This applet is dynamic and
handles presses of buttons.

The following shows the program:

class Board {
dj Button b[9]; // Buttons "O",...,"9"
dj Button bc {text == "C"};
... // Buttons "4" M= txn w/u o n nzn

for (i in 0..9) b[i].text == String(i);

=lal~}lo
LR S
o

Fig.4 A calculator.

grid({{bc,bdiv,bmul,bsub},
{b[7],b[8], ©b[9], badd},
{b[4],b[5], b[6], badd},
{b[1]1,v[2], ©b[3], beq },
{b[0],b[0], bpoint,beq}});

}

}

class Calculator {
dj TextField tf{text=="0";columns==20};
dj Board bd;

// constraints
above(tf,bd);
sameCenterX(tf,bd);

// actions

for (i in 0..9) command(bd.b[i],inputDigit(char(i)));

command (bd.bc,clear());
command (bd . badd, input0p(’+’));

}

The class Board is composed of several buttons, each
button for a key. The for constraint determines the
values for the text attributes of the digit buttons.
The expression String(i) converts an integer i into
a string. The grid constraint constrains the positions
for the buttons. This example illustrates a nice fea-
ture of the grid constraint: A component may occur
multiple times in the array argument. In this case, the
component will use multiple grid squares as its layout
area. In our example, the buttons for 0, +, and = are
twice as big as other buttons.

The Calculator class is composed of two compo-
nents: a display and a board. The display is simply
a text field which is already available as a base class
in DJ. The text field must be located above the board
and the centers must be aligned along the y-axis.

The command expressions specify the actions. In gen-
eral, an action takes the following form:

command (Component ,Event ,MethodCall)

It attaches the action MethodCall to Component which
will be taken when Event happens to the compo-
nent. If Event is right-clicked, then it can be omit-
ted. The following two methods are built-ins in DJ:
showDocument (file) and playClip(file). The for-
mer shows an HTML document and the later plays an
audio clip.

The actions do calculations. They have no impact
on the layout of the graphic components. Even if they
change the layout of some graphical components, the
constraints on the components will not be maintained
dynamically. Constraints in the original program will
be lost after an applet is generated. However, The
methods clear, inputOp, etc. together with the vari-
ables they manipulate will remain.

7 Conclusion

Constraint programming languages and concepts
have been gaining a wide acceptance recently. There
are quite a few constraint languages around now
[2, 3, 7, 5], and even some non-constraint languages
also provide some constraint-like statements.

In this paper, we presented DJ, an extension of Java
that supports constraint programming. We illustrated
by examples that DJ can serve as a constraint pro-
gramming language, in general, and serve as a powerful
layout manager for graphic components, in particular.

Java’s GridBagLayout layout manager allows the
users to specify constraints that constrain the sizes and
positions of components to be laid out in a grid board.
Nevertheless, the constraints allowed are very limited.
Constraints are all directional, and it is impossible to
describe arbitrary layout of components.

Constraint logic programming (CLP) languages
combine constraint solving and logic programming [5].
DJ is implemented in B-Prolog, but it is more than an-
other syntactical sugar for CLP. DJ is object-oriented
and provides arrays and many graphic classes. The lack
of arrays and the object-oriented feature in CLP has
long been considered a serious shortcoming. Compared
with CLP languages, DJ is a domain-specific language.
DJ is well suited for developing applets to be embedded
in some Web documents and/or integrated into some
larger applications.

There are constraint libraries for various languages,
including very successful commercial products. The
good thing of this approach to introducing constraint
solving to a language is that everything is done in one
language. The implementers do not need to implement
and the users do not need to learn a new language.
The bad thing is the lack of flexibility. The syntax for
constraints is usually unnatural, especially for libraries

in Java which does not support macro expansion and
operator overloading. In addition, it is still hopeless
now to implement a fast constraint solver in Java.

There are a lot of work remaining to be done to make
DJ a nice tool for building Web documents and solv-
ing combinatorial optimization problems. Just like we
develop various LaTex macros for different publishing
purposes, we need to enrich the set of base classes in
DJ to facilitate developing various Java applets. Also,
we need to design classes for various combinatorial op-
timization problems such as scheduling, time tabling,
and resource location.

8 Acknowledgements

This work was conducted while the author was with
Kyushu Institute of Technology and was supported in part
by AITEC under the grants itaku-9-21 and itaku-10-13 and
by TAO under the grant JSPS-RFTFITR16501.

References

[1] K. Arnold and J. Gosling: The Java Programming
Language, Second Edition, Addison-Wesley, 1998.

[2] K.R. Apt and A. Schaerf: Search and Imperative Pro-
gramming, Proc. of 24th ACM SIGPLAN-SIGACT
Symposium on Programming Languages (POPL ’97),
pp. 67-79.

[3] A. Borning, R. Lin, and K. Marriott: “Constraints
and the Web”, Proceedings of the ACM Multimedia
Conference, pp.173-182, 1997.

[4] J. Cohen: Constraint Logic Programming Languages,
Communications of ACM, Vol.33, No.7, pp.52-68.

[6] J. Jaffar & M.J. Maher: Constraint Logic Program-
ming: A Survey, J. Logic Programming, Vols.19/20,
pp.503-582, 1994.

[6] W. Leler: Constraint Programming Languages, Their
Specification and Generation, Addison-Wesley Pub.,
1988.

[7] P.V.Hentenryck: The OPL Optimization Programming
Language, The MIT Press, 1999.

[8] N.F. Zhou: B-Prolog
Users Manual, Version 3.1, Kyushu Institute of Tech-
nology, 1998, http://www.cad.mse.kyutech.ac.jp /peo-
ple/zhou/bprolog.himl.

[9] N.F. Zhou: DJ Users Manual, Version 0.5, Kyushu
Institute of Tech-
nology, 1999, http://www.cad.mse.kyutech.ac.jp /peo-
ple/zhou/dj.himl.

