A Register-free Abstract Prolog Machine with
Jumbo Instructions

Neng-Fa Zhou

CUNY Brooklyn College & Graduate Center

1 Introduction

The majority of current Prolog systems are based on the WAM, in which reg-
isters are used to pass procedure arguments and store temporary data. In this
paper, we present a stack machine for Prolog, named TOAM Jr., which departs
from the TOAM adopted in early versions of B-Prolog in that it employs no
registers for temporary data and it offers variable-size instructions for encoding
unification and procedure calls. TOAM Jr. is suitable for fast bytecode inter-
pretation: the omission of registers facilitates instruction merging and the use
of jumbo instructions results in more compact code and execution of fewer in-
structions than the use of fine-grained instructions. TOAM Jr. is employed in
B-Prolog version 7.0. Benchmarking shows that TOAM Jr. helps significantly
improve the performance: the execution speed is increased by 48% on a Win-
dows PC and 77% on a Linux machine. Despite the overhead on standard Prolog
programs caused by the adoption of a spaghetti stack to support event handling
and constraint solving, B-Prolog version 7.0 compares favorably well with the
state-of-the-art WAM-based Prolog systems.

2 The TOAM Jr. Instruction Set

TOAM Jr. inherites the memory architecture from the TOAM. There is a frame
for each procedure call, which stores arguments, machine status registers, and
local variables. A different set of machine status registers needs to be saved for
each different procedure type, and hence frames for different types of procedures
have different structures.

Instructions are classified into the following categories: control (allocate,
return, fork, cut, and fail), branch (jmpn_constant, switch_on_cons, jmpn_
struct, and hash), move (move_list and move_struct), unify (unify_constant,
unify value, unify list, and unify_struct) and call (call and last_call).
The following shows an example. An operand in the form of y(Loc) denotes a
frame slot where a positive offset refers to an argument and a negative offset
refers to a local variable. A tagged operand can be an uninitialized frame slot
v(i), an initialized frame slot u(i), or a constant c(a). A singleton variable is
denoted as v(0). The binary literal ’0b11101’ is the layout bit vector for the last
call, which indicates that all the arguments except for the second one (Y) are
misplaced and need to be rearranged if the current frame is reused.

% p(X:Y:Z) :_S=f(X:Y) ,q(S),r(Z,Y,X,W,9) .

p/3: allocate_det(3,5) % arity=3; frame size=5
move_struct(y(-1),£/2,u(3),u(2)) % S=f(X,Y)
call(q/1,u(-1)) % q(8)

last_call(0b11101,r/5,u(1),u(2),u(3),v(0),c(9))

TOAM Jr. offers specialized instructions that carry the numbers and types of
operands in their opcodes, and also merged instructions each of which combines
two or more base instructions.

3 Experimental Results

Table 1 compares B-Prolog version 7.0 (BP7.0) with version 6.9 (BP6.9) and
three fast WAM implementations (Yap 5.1.1, SICStus 4.0, and hProlog 2.7.14)
on CPU time on a Linux machine (3.8GHz CPU and 2G RAM). B-Prolog outper-
forms SICStus and Yap but is about 10% slower than hProlog. Benchmarking
on a Windows XP machine reveals that BP7.0 is on average 48% faster than
BP6.9, 12% faster than SICStus, and 27% faster than Yap. No Windows version
of hProlog was available.

The speedup of BP7.0 over BP6.9 is mainly attributed to the use of special-
ized jumbo instructions, which would be more difficult if registers were existent.
Other factors affect the performance too. In B-Prolog, the top bit of a word
is reserved for tagging and, because of this, pointers have to be repaired after
being untagged on Linux machines. Repairing pointers imposes about 5% speed
overhead. hProlog uses the lowest three bits for tags and therefore requires no
repairing of pointers. The B-Prolog and hProlog compilers are able to detect the
determinacy of a key predicate in tak. This is probably the main reason why
they run faster on tak than the other two systems. B-Prolog has suspension
frames stored on the stack (so called spaghetti stack), which facilitates context
switching for action rules but incurs certain overhead on Prolog programs: even
for a predicate that is made up of only one fact, the return instruction needs to
check if the current frame is reusable since any predicate can be interrupted.

Table 1. Comparison on CPU times.

| program |BP7.0|BP6.9|Yap|Sics|hProlog|

boyer 1 1.69 |1.28|1.87| 1.04
browse 1 1.72 |1.45(1.55| 0.74
chat_parser| 1 1.56 |1.36|1.82| 1.13
crypt 1 1.56 |1.65|1.94 0.92
meta_qsort| 1 1.54 (1.21]1.22| 0.70
nreverse 1 3.31 |1.17(1.03| 0.62
poly_10 1 1.63 |1.81(1.59 0.87
queens_8 1 1.68 [1.29(1.60 0.75
reducer 1 1.62 |1.43(1.73| 0.98
sendmore 1 1.96 (1.81(2.33| 1.13
tak 1 1.70 |3.25(2.42 1.09
zebra, 1 1.30 |0.83(1.07| 0.91
mean 1 1.77 |1.55(1.68| 0.91

