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Abstract

Delaying-based tabling mechanisms, such as the one adopted in XSB, are non-
linear in the sense that the computation state of delayed calls has to be preserved.
In this paper, we present the implementation of a linear tabling mechanism. The
key idea is to let a call execute from the backtracking point of a former variant call
if such a call exists. The linear tabling mechanism has the following advantages over
non-linear ones: (1) it is relatively easy to implement; (2) it imposes no overhead on
standard Prolog programs; and (3) the cut operator works for a certain class of useful
tabled programs and thus it is possible to use the cut operator to express negation-
as-failure and conditionals in those programs. The weakness of the linear mechanism
is the necessity of re-computation for computing fixpoints. However, we have found
that re-computation can be avoided for a certain portion of calls of directly-recursive
tabled predicates. We have implemented the linear tabling mechanism in B-Prolog.
Experimental comparison shows that B-Prolog is close in speed to XSB when re-
computation can be avoided. Concerning space efficiency, B-Prolog is much better
than XSB for some programs.

1 Introduction

Tabling [12, 14] in Prolog is a technique that can get rid of infinite loops for bounded-
term-size programs and possible redundant computations in the execution of Prolog
programs. The main idea of tabling is to memorize the answers to some calls and use
the answers to resolve subsequent variant calls. Tabling has been found useful in many
applications including program analysis, parsing, deductive databases, theorem proving,
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model checking, and problem solving [14]. Although tabling can be added on top of
Prolog [5], doing so is a burden on the programmers and can hardly achieve satisfactory
performance. For this reason, it is mandatory that tabling be supported at the abstract
machine level.

Currently, XSB is the only well-known Prolog system that supports tabling. The SLG
[2] resolution adopted in XSB relies on the suspend/resume mechanism to do tabling.
When a call (consumer), which is a variant of a former tabled call (producer), has used
up the results in the table, it will be suspended. After the producer adds answers to
the table, the execution of the consumer will be resumed. In contrast to the linear SLD
resolution [7] where a new goal is always generated by extending the latest goal, SLG res-
olution is non-linear. The non-linearity of the suspend/resume mechanism considerably
complicates the implementation and the handling of the cut operator. In SLG-WAM [9],
the abstract machine adopted by XSB, the state of a consumer is preserved by freezing
the stacks, i.e., by not allowing backtracking to reclaim the space on the stacks as is
done in the WAM [13]. CHAT [4] preserves the state by copying part of it to a separate
area and copying it back when the execution of the consumer needs to be resumed. In
XSB, tabled calls are not allowed to occur in the scope of a cut.

Shen et al [10] proposed a strictly linear tabulated resolution, called SLDT in this
paper, for Prolog. The main idea is as follows: Each tabled call can be a producer and
a consumer as well. When there are answers available in the table for the call, the call
consumes the answers; otherwise, it, like a usual Prolog call, produces answers by using
clauses until a call that is a variant of some former tabled call occurs. In this case,
the later call steals the choice point from the former call and turns to produce answers
by using the remaining clauses of the former call. After a call produces an answer, it
also consumes one. Answers in a table are used in a first-generated-first-used fashion.
Backtracking is strictly chronological. The later call will be re-executed after all the
available answers and clauses have been exhausted. Re-execution will stop when no new
answer can be produced, i.e., when the fixpoint is reached.

To implement SLDT, we have extended the ATOAM [15], the abstract machine of B-
Prolog. The extension of the abstract machine is straightforward thanks to the linearity
of SLDT. Since no modification of the existing instructions and data areas is required,
programs that do not use tabling are not affected. The implementation will be described
in Section 3. While re-computation is necessary in general, we show in Section 4 that it
can be avoided for a class of tabled calls. Most calls of predicates in deductive databases,
such as transitive closure and same generation, belong to this class.

We have implemented the linear-tabling mechanism in B-Prolog. For the CHAT
benchmark suite [4] for which re-computation is necessary, B-Prolog is 1/3 as fast as
XSB. Nevertheless, for the well known programs in deductive database, B-Prolog is as
fast as XSB. The experimental results will be presented in Section 5.

The readers are assumed to be familiar with logic programming and the WAM.
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2 An Introduction to SLDT

In this section, we give a brief introduction to SLDT. The reader is referred to [10] for a
formal description and a formal proof of the soundness and completeness of SLDT, and
to [7] for definitions of SLD and related concepts.

Predicates in a tabled Prolog program are divided into tabled and non-tabled ones.
Tabled predicates are explicitly declared by declarations in the following form:

:-table p1/n1, . . ., pk/nk

where each pi(i=1,. . .,k) is a predicate symbol and ni is an integer that denotes the arity
of pi. A call of a tabled predicate is called a tabled call. Tabled calls are resolved by
using SLDT, and non-tabled calls are resolved by using SLD. A tabled call that occurs
first in an SLD tree is called a pioneer, and all subsequent calls that are variants of a
pioneer are called followers of the pioneer. There is a table associated with every pioneer
and its followers. Initially, the table is empty.

The SLDT resolution takes a tabled Prolog program and a goal, and constructs an
SLD tree in the same left-to-right and depth-first fashion as the SLD resolution except
when the selected call is a variant of some former call. In this case, we first use the
answers in the table to resolve the call. After we exhaust all the answers, we resolve the
call by using the remaining clauses of the latest former call. We say that the current
call steals the choice point from the latest former call.

Backtracking is done similarly as in Prolog. When we backtrack to a tabled call,
we use an alternative answer or a clause to resolve the call. After we exhaust all the
answers and clauses, however, we cannot simply fail it since doing so we may risk losing
answers. Instead, we decide whether it is necessary to re-execute the call starting from
the first clause of the predicate. Re-execution will be repeated until no new answers can
be generated, i.e., when the fixpoint is reached.

In the following, we illustrate the behavior of SLDT using three examples.

Example 1

Consider resolving the query ?-reach(a,Y0) against the following tabled program:

:-table reach/2.

reach(X,Y):-reach(X,Z),edge(Z,Y). (C1)

reach(X,X). (C2)

reach(X,d). (C3)

edge(a,b). (C4)

edge(d,e). (C5)

We first apply the clause C1 to the call reach(a,Y0) and obtain a new goal N1:

reach(a,Z1),edge(Z1,Y0) where the subscripts are added to indicate the effects of
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variable renaming (see Figure 1). As the call reach(a,Z1) is a follower of reach(a,Y0),
we choose C2, the backtracking point of reach(a,Y0), and apply it to reach(a,Z1),
which results in a new child goal N2:edge(a,Y0). As reach(a,a) is an answer to the
call reach(a,Z1), it is memorized in the table for reach(a,Y0). We then resolve the
call edge(a,Y0) by using the clause C4, which leads to an empty goal. So the answer
reach(a,b) is added into the table for reach(a,Y0). After these steps, we finish the
leftmost branch of the tree as shown in Figure 1.

Figure 1: The SLD tree for the example.

Now consider backtracking. We first backtrack to the call reach(a,Z1) at node N1.
This call has consumed reach(a,a) in the table. So, we use the next answer reach(a,b)
to resolve it, which derive the goal to N4:edge(b,Y0). Obviously, this goal will fail. So,
we backtrack to the call reach(a,Z1) again. This time, as all answers in the table have
been used, we use C3 to resolve the call and obtain a new answer reach(a,d), which
is added to the table. After this step, the goal becomes N5:edge(d,Y0). By using C5

to resolve the call, we obtain another new answer reach(a,e), which is added into the
table. The goal now becomes empty, and the second answer reach(a,b) is returned to
the top-level goal.

When more answers are required, we backtrack again to the call reach(a,Z1) at
node N1. At this time, there is only one answer, reach(a,e), remaining for the call.
By using the answer to resolve the call, we obtain a goal N7:edge(e,Y0) which will fail
immediately. By now, reach(a,Z1) has consumed all the answers and executed all the
clauses. We re-execute the call but fail to produce any new answers. So, we fail it and
backtrack to the pioneer reach(a,Y0), which will consume the two remaining answers:
reach(a,d) and reach(a,e).
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Example 2

In the previous example, re-computation produces no new answers. This example il-
lustrates the necessity of re-computation. Consider the query ?-p(X0,Y0) against the
following program [10]:

:-table p/2.

p(X,Y):-q(X,Y).

q(X,Y):-p(X,Z),t(Z,Y).

q(a,b).

t(b,c).

There are two answers, namely, p(a,b) and p(a,c), to the query. Without re-computation,
the second answer p(a,c) would be lost.

Example 3

Before a call steals the choice point (call it C1) from a former variant call, the former
call might have created some other choice points (call them C2) which locate to the
left of C1 in the SLD tree1. If this is the case, the order of solutions will differ from
that found by SLD resolution since C1 will be explored before C2. Consider the query
?-p(X),p(Y) against the following program:

:-table p/1.

p(V):-t(V).

p(c).

t(a).

t(b).

First, we use the clause p(V):-t(V) to rewrite the subgoal p(X) to t(X), and the fact
t(a) to resolve the subgoal and bind X to a. Then, we turn to execute p(Y). Since p(Y)

is a variant of p(X), the choice point of p(X) is stolen by p(Y). We use the first answer
in the table, i.e., p(a), to resolve p(Y). At this point, we get the first answer (X=a,Y=a).
To obtain the next answer, we backtrack to p(Y). Since there is no answer remaining,
we use the clause p(c), which leads to the second solution (X=a,Y=c). Note that if SLD
resolution is used, the second answer obtained will be (X=a,Y=b).

The order issue would not happen if we only allowed a call to steal a choice point
from one of its ancestors. To do so, however, we have to check the ancestor/descendant
relationship between two variant calls, which is expensive. It is acceptable in practice

1To say it more precisely, the corresponding branches of C2 locate to the left of the corresponding
branches of C1 in the SLD tree.
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to avoid this test because fixpoints are usually required for tabled predicates and thus
the order of answers is not important.

3 Extending the ATOAM for Tabling

In the ATOAM [15], unlike in the WAM, arguments are passed through stack frames and
only one frame is used for each predicate call. Frames for different types of predicates
have different structures.

To implement SLDT, we introduce a new data area, called table area, for memorizing
tabled calls and their answers, a new frame structure for tabled calls, and several new
instructions for encoding the basic operations on tabled calls and the table area. We
illustrate the instructions by examples. The reader is referred to the Appendix for their
complete definitions.

3.1 The table area

For each pioneer and its followers, there is an entry in the subgoal table that contains
the following four fields:

Call: the predicate symbol and the arguments of the call.
AR: the pointer to the frame of the latest variant call.
Answers: list of available answers.
Revised: whether or not new answers have been added.

The subgoal table is a hashing table that uses Call as the key. The AR field points to
the frame of the latest variant call. It may take either of the following two values if it is
not a pointer to a frame:

NULL: the corresponding frame has been cut off by a cut.
COMPLETE: the frame has been discarded after completion.

For a follower call, if the AR field of its table entry is NULL, then the call will have no choice
point to steal from and the execution will start from the beginning of the predicate. If
the AR field is COMPLETE, then all the answers of the call must have been produced in
the table and thus no clause in the predicate need be executed.

The Answers field, which is called the answer table for the variant calls, stores the list
of answers that are currently available for the calls. The answer table is also a hashing
table, but the order of answers is preserved. The Revised is used to check whether or
not re-computation needs to be continued. It is set to be false whenever the tabled
predicate is executed or re-executed, and set to be true whenever an answer is added
into the answer table. After the execution of the tabled predicate, Revised is checked.
If it is true, then the predicate needs to be re-executed; otherwise, not.
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3.2 Frames for tabled calls

The frame for a tabled call contains the following three slots in addition to the arguments,
a copy of the arguments and the information stored in a choice point frame2:

Table pointer to the table entry for the call.
CurrA pointer to the answer that was last consumed.
Pioneer Pointer to the frame of the pioneer.

If the tabled call is a pioneer, then an entry is added into the table , the Table slot of
its frame is made to point to the entry, and the Pioneer slot is made to point to itself.
If the call is a follower for which there is already an entry in the subgoal table, then the
Table slot is made to point to the entry and the Pioneer slot is made to point to the
frame of the pioneer. The first answer in an answer table is a dummy answer and CurrA

is initialized to be a pointer to this dummy answer.

3.3 New instructions

There are four newly introduced instructions for tabled programs without cuts. The
following example illustrates their meaning and how they are used.

:-table p/2.

p(X,Y):-q(X,Y).

The generated code is as follows:

table_allocate 2,13,p/2,L2

L1: table_use_answer

fork L2

para_value y1

para_value y2

call q/2

table_add_use_answer

L2: table_use_answer

table_check_completion L1

where the instructions starting with table are new. A new clause, called completion-
checking clause, is added into the predicate. The two instructions at L2 encode this
clause.

2A choice point frame has the following slots: AR (parent frame), CP (continuation program point),
TOP (top of the control stack), B (parent choice point), CPF (backtracking point), H (top of the heap),
and T (top of the trail stack).
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table allocate 2, 13, p/2, L2

The instruction table allocate is the first instruction in a tabled predicate. The
operands are as follows: 2 is the arity, 13 is the size of the frame, p/2 is the predi-
cate symbol, and L2 is the address to go to after all the clauses have been tried. For
each call to the predicate, this instruction copies the arguments and allocates a frame
for the call. Besides bookkeeping operations needed for backtracking, this instruction
also does the following:

• If the call is a pioneer, then create an entry in the table, let the Table slot of
the frame point to the table entry, and let the AR field in the table entry point to
the frame. The backtracking point CPF of the frame is set to point to the next
instruction.

• If the call is a follower for which there is already an entry in the subgoal table,
then let the Table slot of the frame point to the table entry and take the following
different actions according to the AR field in the table entry.

– If the AR field is NULL, meaning that its frame has been discarded by a cut
operator (see below), then treat the call as a pioneer, letting the AR field point
to the current frame.

– If the AR field is COMPLETE, meaning that all the answers have been produced
for the call, then jump to L2 and let the call consume the answers.

– If the AR field points to a frame which must be the frame of the latest variant
call, then we execute from the backtracking point stored in the frame and
reset the backtracking point to be L2. This operation is what we call stealing
a choice point.

table use answer

The table use answer instruction tries to use the next answer. If there are answers
available, it unifies the original arguments of the call with the next answer and returns
control to the continuation program point; otherwise, it does nothing before turning to
execute the clause following the instruction.

The fork L2 instruction resets the backtracking point CPF to be L2. So, q/2 will
not be executed on the next backtracking. The next three instructions following fork

L2 pass the arguments to the callee and start the execution of q/2.

table add use answer

The table add use answer instruction adds the current call, which becomes an answer,
into the answer table if the call is not yet there and tries to use the next answer. If there
is an answer in the table, then it does the same thing as table use answer, returning the
answer to the caller. Otherwise, if no answer is available, then it triggers backtracking.
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Note that this situation is possible since the answer being added may have been in the
table and may have already been consumed by the call.

table check completion L1

As we mentioned above, L2 is the address to go to after all the clauses have been
executed. The table use answer instruction at L2 returns all remaining answers. After
that, the table check completion L1 instruction determines whether or not the current
predicate need be re-executed. If the AR field in the table entry for the call is COMPLETE,
then discard the current frame and fail; if there was some new answers added into the
table during the last round of execution, then re-execute the predicate starting from L1;
otherwise, if no new answer was added into the table during the last round of execution,
then set the AR field to be COMPLETE, discard the current frame, and fail.

3.4 Cut

The cut operator ’ !’ in SLDT behaves in strictly the same way as that in the SLD
resolution. Consider a cut in the clause

H:-L,!,R.

The cut ! discards the choice points created for H and L. With tabling, however, we
cannot just discard the choice points. We also have to cut the connection between the
tabled calls in L and their table entries by properly updating the AR fields in the table
entries. Otherwise, the AR fields in some table entries may become dangling pointers
pointing to frames that no longer exist. We handle the cut in three different ways
depending on the context in which the cut occurs:

• If H and all those called (directly or indirectly) by L are non-tabled, then we just
treat the cut as a cut in a standard Prolog program, letting it discard the choice
points created for H and L.

• If H is not tabled but there is at least one tabled predicate call in L, then we let the
cut discard the choice points and cut the relationship between the tabled calls and
their table entries by resetting the AR fields in the entries to be NULL. We introduce
a new instruction, called table cut outside, to encode this type of cuts, where
outside means that the cut does not reside in a tabled predicate.

• If H is a tabled predicate, then we let the cut discard the choice points created by
L, cut the relationship between the tabled calls and their table entries, and set the
backtracking point to be the address of the completion-checking clause. So, when
the calls to the right of the cut fail, the table use answer and table check completion

instructions will be executed. We introduce another new instruction, called table cut inside,
to encode this type of cuts, where inside means that the cut resides in a tabled
predicate.
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After the AR field in a subgoal table entry becomes NULL, the next variant call will
be treated as a pioneer (see the table allocate instruction).

Consider, as an example, a cut that does not reside in a tabled predicate but has
tabled calls in its scope:

:- table q/1.

p(X,Y):-q(X),!,q(Y).

q(Z):-q(Z).

q(a).

q(b).

The call q(X) produces one answer, namely q(a), and binds X to a. After that, the cut
discards the choice point for q(X) and disconnects q(X) and its table entry by setting
the AR field of the entry to be NULL. Because the relationship was cut off, q(Y) will be
executed like a pioneer. The answers returned to the query ?-p(X,Y) will be p(a,a)

and p(a,b).
Consider, as another example, a cut that resides in a tabled predicate:

:- table q/1.

q(X):-!,q(X).

q(a).

Since there is no call appearing to the left of the cut, the cut just sets the backtracking
point to be the address of the ending clause. When the call following the cut, which is a
follower of the head, is executed, it will execute from the ending clause. Since no answer
exists in the table, the follower will fail, which will cause the pioneer to fail too.

There is a case that we have not considered yet: what should we do if the AR field
of the table entry of the current call is NULL when we execute the completion-checking
clause? The following example illustrates this situation:

:- table p/1.

p(X):-q(X).

p(a).

p(b).

q(Y):-p(Y),!.

Consider the query p(X0). It is reduced to q(X0), which is re-written to p(X0),! by the
last clause. The later p(X0) steals the choice point of the pioneer and executes from the
second clause, i.e., p(a). After that, the cut sets the AR field of the table entry to NULL.
Upon backtracking, the completion-checking clause will be executed for the pioneer. If
the original table check completion instruction is used, we will lose the solution p(b)!

In general, a cut in a clause

q(...):-L,!,R
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cannot be handled if there is a tabled predicate call p in L and q is called by p directly
or indirectly. In other words, cuts that do not occur in cycles in the calling graph can
be handled correctly. This is a significant progress considering that cuts have been ruled
out completely from tabled Prolog systems. For a statement like “if there is a path in
a graph, then do something”, the XSB system has to preserve the status for computing
all the paths even after one path is found.

4 Direct-Recursion Optimization (DRO)

Re-computation should be avoided if it is known to produce no new answers. It is an
open problem to decide the exact class of predicates and calls for which re-computation
is avoidable. In this section, we define a class of predicate calls for which re-computation
is unnecessary and show how to optimize it.

Definition 1 A predicate is said to be table-irrelevant if it is not tabled and all the
predicates it calls directly or indirectly are table-irrelevant.

Definition 2 A clause in a tabled predicate p is said to be directly-recursive if all the
calls in the body either call p or call table-irrelevant predicates.

Definition 3 A tabled predicate is called a DRO (Directly-Recursive Optimizable)
predicate if it consists of one directly-recursive clause and possibly several clauses whose
bodies are table-irrelevant.

Theorem 4.1 For a DRO predicate, re-computation is unnecessary for ancestor/descendant
variant calls of the predicate3.

Let the following be the directly-recursive clause in a DRO predicate:

P : −Q1, ..., Qi, P,Qi+1, ..., Qn

In database terms, the relation P is defined as a join of P and Qis. In deductive databases
where rules are evaluated bottom-up, re-evaluation of recursive rules is needed to reach a
fixpoint [1]. In SLDT, however, since the relations are joined tuple by tuple and a newly
generated tuple is added into the relation P immediately, no re-execution is necessary. As
long as a follower has no answer to be used in the join, no new answer can be produced
for its pioneer. This guarantees that we can fail a follower safely after it exhausts all its
answers and clauses.

Note that re-computation is still required if the follower is not a descendant but a
sibling of the former variant call. Consider the following program:

3This theorem was found later to hold only for parent/child variant calls.
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Table 1: Comparing time efficiency.

Progs tcl tcr sg cs o cs r disj gabriel kalah peep pg read

B/XSB 1.0 1.0 0.52 2.95 3.45 3.30 3.60 2.60 4.50 3.00 2.08

:-table p/2.

q(A,B,C,D):-p(A,B),p(C,D).

p(X,Z):-p(X,Y1),p(Y2,Z),Y1=Y2.

p(X,Y):-t(X,Y).

t(a,b). t(b,c). t(c,a).

Without re-computation of p(C,D), the solution q(a,b,a,a) and many others would be
lost.

We introduce another new instruction, called table end L, which substitutes table check completion

L instruction in the completion-checking clauses in DRO predicates. This instruction first
checks whether the parent call and the pioneer of the current call are the same. If so,
it behaves just like table check completion as though the fixpoint has been reached.
Otherwise, if the parent and the pioneer are different, then table end L behaves ex-
actly the same as table check completion. Note that what is offered by the theorem
is not fully exploited here. We only avoid re-computation for parent/child calls but
not ancestor/descendant calls because we want to avoid the more expensive test of the
ancestor/descendant relationship.

5 Performance Evaluation

Tables 1 compares the time efficiency of B-Prolog (version 6.04) with that of XSB (version
2.4) for a set of programs. For XSB, the batched scheduling strategy was used. The
tcl is the left-recursive version and the tcr is the right-recursive version of a program
for computing the transitive closure of a graph. The sg computes the same-generation
relation of the graph. The rest of the programs are taken from [4]. The numbers are the
ratios of the time taken by B-Prolog to that taken by XSB. The comparison was done
on a SPARC-10 workstation.

For the three small programs, namely, tcl, tcr and sg, B-Prolog has a time perfor-
mance comparable with or better than that of XSB. These three programs are datalog
(i.e., function-free) programs and require no or little re-computation5.

4The tabling mechanism in B-Prolog was implemented in 1998 and has been left untouched since
then.

5No re-computation is necessary if the ancestor/descendent relation is checked. In B-Prolog, however,
as only parent/child relation is checked, re-computation is still performed for tcr and sg even with the
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Table 2: Comparing stack space efficiency.

Progs tcl tcr sg cs o cs r disj gabriel kalah peep pg read

B/XSB 0.43 0.96 1.03 2.40 3.43 2.09 0.79 0.87 0.07 0.12 0.05

Table 3: Comparing table space efficiency.

Progs tcl tcr sg cs o cs r disj gabriel kalah peep pg read

B/XSB 0.46 0.72 1.64 0.80 0.79 0.93 0.86 0.79 0.70 0.89 0.84

For the CHAT suite, B-Prolog is on average about three times as slow as XSB. Two
factors contribute to this result: First, DRO is applicable to none of the predicates in the
suite and thus re-computation is necessary; and second, arguments of the tabled calls are
complex terms for which the decision-tree data structure, called trie, adopted in XSB [11]
should be much faster than hash tables employed in B-Prolog. It is difficult to draw a
consistent conclusion from the figures. On the one hand, B-Prolog is on average twice as
fast as XSB for standard Prolog programs, and on the other hand the trie data structure
used in XSB is far more advanced than hash tables used in B-Prolog for managing the
table area. Profiling the execution of the CHAT programs on B-Prolog shows that 75%
of the time is spent in accessing the table area. Therefore, fast data structures for tabled
calls are more important than a fast Prolog engine for these programs. This implies that
the potential for improvement is very large in B-Prolog as long as tabling is concerned.

Table 2 compares the amounts of stack space required by B-Prolog and XSB to run
the programs. For XSB, the CHAT area, which is used to preserve computation status,
is also counted. For some programs, B-Prolg consumes more space because for each
tabled call a copy is made on the control stack for producing answers. XSB requires
more stack space for some programs because it keeps multiple paths of the search trees.
For read, for example, XSB consumes more than 20 times stack space than B-Prolog.

Table 3 compares the amounts of the required table space. The table space area
stores subgoals and answers. For each variant of tabled subgoals, only one copy needs
to be stored. Also, the number of answers that need to be stored is independent of
the tabling mechanism. Therefore, if the same data structures are used to manage data
in the table area, the required table space should be the same on both systems. The
figures, in fact, do not show much difference although different data structures are used
in XSB and B-Prolog.

DRO optimization.

13



6 Related Work

Currently, there is only one widely available Prolog system, namely XSB, that supports
tabling. In XSB, a very first tabled call is treated as a producer and all subsequent
variant calls are treated as consumers. When execution backtracks to the producer, the
state of the consumers must be preserved. This non-chronological backtracking scheme
does not go well with the WAM.

To simplify the implementation of tabling in XSB, Demoen and Sagonas proposed
two alternative schemes for preserving the choice points of consumers and the related
stacks [3, 4]. Instead of preserving the state of consumers by freezing the stack and heap,
the new schemes save part of the state in a different area. These schemes are simpler than
SLG-WAM and impose less overhead on the execution of standard Prolog programs, but
the implementation is still complicated and the cut operator is left unhandled.

In this paper, we presented the implementation of a linear tabling mechanism. The
linear feature brings several advantages: Firstly, a class of useful cuts can be handled
correctly. This is a big step forward from the XSB system, where no tabled calls can
reside in the scope of a cut. In XSB, for example, the sentence “if there is a path between
two vertexes in a graph, then do something” cannot be described unless all the paths
between the vertexes are found. Secondly, the implementation is relatively easy. Thirdly,
the implementation imposes no overhead on the execution of standard Prolog programs.
In comparison, the implementation of SLG-WAM [9] imposes about 10% overhead on
standard Prolog programs. The overhead has been reduced significantly in CHAT [4],
but an overhead-free implementation is yet to be achieved. The disadvantage of our
scheme is the necessity of re-computation.

Recently, Guo and Gupta [6] proposed a tabling scheme that combines the advantages
of SLG-WAM and SLDT. It reorders the alternative clauses for tabled calls such that
non-looping clauses are executed before looping clauses 6 and only looping clauses need
be re-executed.

7 Concluding Remarks

The need to extend Prolog to narrow the gap between declarative and procedural read-
ings of programs has been urged long before [8]. Although tabling has been perceived as
necessary to narrow the gap, it has not raised much interest among Prolog implemen-
tors compared with other extensions such as concurrency and constraint solving. One
primary reason may be the lack of an easy-to-implement tabling mechanism. In this
paper, we proposed a mechanism that is much simpler than the SLG-WAM. Our imple-
mentation has a comparable performance with XSB for programs that do not require
re-computation, and is still slower than XSB for programs that require re-computation
and/or manipulation of complex terms. We believe that the gap will be gone after more

6A looping clause is a clause that generates a variant call.
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efficient data structures are adopted for tables and more effective techniques are invented
for eliminating re-computation.
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Appendix I: Tabling Instructions

table_allocate Arity, Size, p, L:

copy the arguments to the slots directly after the original arguments;

allocate Size slots;

tableEntry = lookupTable(AR,p,Arity);

if (tableEntry == NULL){ /* AR is a pioneer */

AR->Table = tableEntry = add a new table entry;

AR->Pioneer = AR;

P = NextInstruction;

} else {

AR->Table = tableEntry;

if (tableEntry->AR==NULL){ /* treat AR as a pioneer */

AR->Pioneer = AR;

tableEntry->AR = AR;

P = NextInstruction;

} else if (tableEntry->AR==COMPLETE){

P = L;

} else {

AR->Pioneer = tableEntry->AR->Pioneer;

P = tableEntry->AR->CPF; /* steal backtracking point */

tableEntry->AR->CPF = L;

tableEntry->AR = AR;

}

}

AR->CurrA = first answer in tableEntry;

AR->CPF = P;

do bookkeeping operations for backtracking;

table_add_use_answer:

add the current answer to the table if it is not there

if (AR->CurrA->Next!=NULL){

goto consume_answer;

} else fail.

table_use_answer:

if (AR->CurrA->Next!=NULL){ /* answer available */

consume_answer:

unify the answer with the original arguments

AR->CurrA = AR->CurrA->Next;

P = AR->CP; /* return control to the caller */

AR = AR->AR;

} else P = NextInstruction;

table_check_completion L:

if (AR->Table->AR==COMPLETE){

cut_fail;

} else if (AR->Table->Revised==true){

P = L;

} else {

fix_point_reached:

AR->Table->AR = COMPLETE;

B = AR->B; /* discard the current choice point frame */

fail; /* provoke backtracking */

}

table_end L:

if (AR->Pioneer == AR->AR){ /* AR is a child of the pioneer */

goto fix_point_reached;

} else goto table_check_completion;
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