
by Neng-Fa Zhou at Kyutech 1

Solving Combinatorial Search

Problems Using B-Prolog

Neng-Fa Zhou

周 能法
The City University of New York

zhou@sci.brooklyn.cuny.edu

by Neng-Fa Zhou at Kyutech 2

B-Prolog:

Prolog + Tabling + CLP(FD)

Prolog

– Rule-based relational language

• SQL + Recursion + Unification + Backtracking

Tabling

– Memorize and reuse intermediate results

• Suitable for dynamic programming problems

CLP(FD)

– Constraint Logic Programming over Finite Domains

• Suitable for constraint satisfaction problems (NP-complete)

by Neng-Fa Zhou at Kyutech 3

Prolog

A program consists of relations defined by

facts and rules

Unification

Recursion

Nondeterminism realized through

backtracking

by Neng-Fa Zhou at Kyutech 4

Prolog – An example

app([],Ys,Ys).

app([X|Xs],Ys,[X|Zs]):-

app(Xs,Ys,Zs).

by Neng-Fa Zhou at Kyutech 5

Syntax of Prolog

Term

• Atom

– string of letters, digits, and '_' starting with a low-case

letter

– string of characters enclosed in quotes

• Number

– integer & real

• Variable

– string of letters, digits and '_' starting with a capital letter

or '_'

by Neng-Fa Zhou at Kyutech 6

Syntax of Prolog (Cont)

• Structure

– f(t1,t2,...,tn)

» f is an atom, called the functor of the structure

» t1,t2,...,tn are terms

• List

– '.'(H,T) => [H|T]

– '.'(1,'.'(2,'.'(3,[]))) => [1,2,3]

by Neng-Fa Zhou at Kyutech 7

Syntax of Prolog (Cont)

Clause

• Fact

– p(t1,t2,...,tn)

• Rule

– H :- B1,B2,...,Bm.

Predicate

• a sequence of clauses

Program

• a set of predicates

Query

Head

Body

by Neng-Fa Zhou at Kyutech 8

Unification

t1 = t2 succeeds if

– t1 and t2 are identical

– there exists a substitution q for the variables in

t1 and t2 such that t1q = t2q.

f(X,b)=f(a,Y).

X=a

Y=b
q = {X/a, Y/b}

by Neng-Fa Zhou at Kyutech 9

Unification: Examples

?-X=1.

X=1

?- f(a,b)=f(a,b).

yes

?- a=b.

no

?- f(X,Y)=f(a,b)

X=a

Y=b

?-f(X,b)=f(a,Y).

X=a

Y=b

?-X = f(X).

X=f(f(......

assignment

test

test

matching

unification

without occur checking

by Neng-Fa Zhou at Kyutech 10

Operational Semantics of Prolog

(Resolution)
G0: initial query

Gi: (A1,A2,...,An)

H:-B1,...,Bm

A1q=Hq

Gi+1: (B1,...,Bm,A2,...,An)q

Succeed if Gk is empty for some k.

Backtrack if Gk is a dead end (no clause can be used).

by Neng-Fa Zhou at Kyutech 11

Deductive Database

parent(Parent,Child):-father(Parent,Child).

parent(Parent,Child):-mother(Parent,Child).

uncle(Uncle,Person) :-

brother(Uncle,Parent), parent(Parent,Person).

sibling(Sib1,Sib2) :-

parent(Parent,Sib1), parent(Parent,Sib2),

Sib1 ¥= Sib2.

cousin(Cousin1,Cousin2) :-

parent(Parent1,Cousin1),

parent(Parent2,Cousin2),

sibling(Parent1,Parent2).

by Neng-Fa Zhou at Kyutech 12

Exercises

Define the following relations

– son(X,Y) -- X is a son of Y

– daughter(X,Y) -- X is a daughter of Y

– grandfather(X,Y) -- X is the grandfather of Y

– grandparent(X,Y) -- X is a grandparent of Y

– ancestor(X,Y) – X is an ancestor of Y

by Neng-Fa Zhou at Kyutech 13

Recursive Programming on Lists

A list is a special structure whose functor is '.'/2

– []

– '.'(H,T) => [H|T]

– '.'(1,'.'(2,'.'(3,[]))) => [1,2,3]

Unification of lists
– [X|Xs]=[1,2,3]

X= 1 Xs=[2,3]

– [1,2,3] = [1|[2|X]]

X=[3]

– [1,2|3] = [1|X]

X=[2|3]

by Neng-Fa Zhou at Kyutech 14

Relations on Lists

isList(Xs)

member(X,Xs)

append(Xs,Ys,Zs)

length(Xs,N)

isList([]).

isList([X|Xs]):-isList(Xs).

member(X,[X|Xs]).

member(X,[_|Xs]):-member(X,Xs).

append([],Ys,Ys).

append([X|Xs],Ys,[X|Zs]):-append(Xs,Ys,Zs).

length([],0).

length([X|Xs],N):-length(Xs,N1),N is N1+1.

by Neng-Fa Zhou at Kyutech 15

Exercise

 Implement the
following predicates.

– length(Xs,N)
• the length of Xs is N

– last(X,Xs)
• X is the last element of

Xs.

– prefix(Pre,Xs)
• Pre is a prefix of Xs.

– suffix(Pos,Xs)
• suffix is a postfix of Xs

– reverse(Xs,Ys)

• Ys is the reverse of Xs

– sum(Xs,N)

• N is the sum of the
integers in the list Xs

– sum1(Xs,Ys)

• assume Xs is
[x1,x2,...,xn], then Ys will
be [y1,y2,...,yn] where yi
is xi+1.

– sort(L,SortedL)

• use the exchange sort
algorithm

by Neng-Fa Zhou at Kyutech 16

Recursive Programming on

Binary Trees
Representation of binary trees

Example

void -- empty tree

t(N, L,R) -- N : node

L : Left child

R : Right child

a

b c

t(a, t(b, void,void), t(c,void,void))

by Neng-Fa Zhou at Kyutech 17

Relations on Binary Trees

isBinaryTree(T)-- T is a binary tree

count(T,C) -- C is the number of nodes in T.

isBinaryTree(void).

isBinaryTree(t(N,L,R)):-

isBinaryTree(L),

isBinaryTree(R).

count(void,0).

count(t(N,L,R),N):-

count(L,N1),

count(R,N2),

N is N1+N2+1.

by Neng-Fa Zhou at Kyutech 18

Relations on Binary Trees (Cont.)

preorder(T,L)

•L is a pre-order traversal of the binary tree T.

preorder(void,[]).

preorder(t(N,Left,Right),L):-

preorder(Left,L1),

preorder(Right,L2),

append([N|L1],L2,L).

by Neng-Fa Zhou at Kyutech 19

Exercise

Write the following predicates on binary

trees.

– leaves(T,L): L is the list of leaves in T.

The order is preserved.

– equal(T1,T2): T1 and T2 are the same

tree.

– postorder(T,L): L is the post-order

traversal of T.

by Neng-Fa Zhou at Kyutech 20

Tabling (Why?)

Eliminate infinite loops

Reduce redundant computations

:-table path/2.

path(X,Y):-edge(X,Y).

path(X,Y):-edge(X,Z),path(Z,Y).

:-table fib/2.

fib(0,1).

fib(1,1).

fib(N,F):-

N>1,

N1 is N-1,fib(N1,F1),

N2 is N-2,fib(N2,F2),

F is F1+F2.

by Neng-Fa Zhou at Kyutech 21

Mode-Directed Tabling

Table mode declaration

– C: Cardinality limit

– Modes

• + : input

• - : output

• min: minimized

• max: maximized

:-table p(M1,...,Mn):C.

by Neng-Fa Zhou at Kyutech 22

Shortest Path Problem

sp(X,Y,P,W)

– P is a shortest path between X and Y with

weight W.

:-table sp(+,+,-,min).

sp(X,Y,[(X,Y)],W) :-

edge(X,Y,W).

sp(X,Y,[(X,Z)|Path],W) :-

edge(X,Z,W1),

sp(Z,Y,Path,W2),

W is W1+W2.

by Neng-Fa Zhou at Kyutech 23

Knapsack Problem
http://probp.com/examples/tabling/knapsack.pl

knapsack(L,K,Selected,V)

– L: the list of items

– K: the total capacity

– Selected: the list of selected items

– V: the length of Selected

:- table knapsack(+,+,-,max).

knapsack(_,0,[],0).

knapsack([_|L],K,Selected,V) :-

knapsack(L,K,Selected,V).

knapsack([F|L],K,[F|Selected],V) :-

K1 is K - F, K1 >= 0,

knapsack(L,K1,Selected,V1),

V is V1 + 1.

by Neng-Fa Zhou at Kyutech 24

Exercises (Dynamic

Programming)

1. Maximum Value Contiguous Subsequence. Given a

sequence of n real numbers a1, ... an, determine a
contiguous subsequence Ai ... Aj for which the sum of
elements in the subsequence is maximized.

2. Given two text strings A of length n and B of length m, you
want to transform A into B with a minimum number of
operations of the following types: delete a character from
A, insert a character into A, or change some character in A
into a new character. The minimal number of such
operations required to transform A into B is called the edit
distance between A and B.

by Neng-Fa Zhou at Kyutech 25

CLP(FD) by Example (I)

The rabbit and chicken problem

The Kakuro puzzle

The knapsack problem

Exercises

by Neng-Fa Zhou at Kyutech 26

The Rabbit and Chicken Problem

 In a farmyard, there are only chickens and rabbits.

Its is known that there are 18 heads and 58 feet.

How many chickens and rabbits are there?

go:-

[X,Y] :: 1..18,

X+Y #= 18,

2*X+4*Y #= 58,

labeling([X,Y]),

writeln([X,Y]).

by Neng-Fa Zhou at Kyutech 27

Break the Code Down

 go -- a predicate

 X,Y -- variables

 1..58 -- a domain

 X :: D -- a domain declaration

 E1 #= E2 -- equation (or
equality constraint)

 labeling(Vars)-- find a
valuation for variables that
satisfies the constraints

 writeln(T) -- a Prolog built-
in

go:-

[X,Y] :: 1..58,

X+Y #= 18,

2*X+4*Y #= 58,

labeling([X,Y]),

writeln([X,Y]).

by Neng-Fa Zhou at Kyutech 28

Running the Program

| ?- cl(rabbit)

Compiling::rabbit.pl

compiled in 0 milliseconds

loading::rabbit.out

yes

| ?- go

[7,11]

by Neng-Fa Zhou at Kyutech 29

The Kakuro Puzzle

 Kakuro, another puzzle originated in Japan after Sudoku,

is a mathematical version of a crossword puzzle that uses

sums of digits instead of words. The objective of Kakuro

is to fill in the white squares with digits such that each

down and across “word” has the given sum. No digit can

be used more than once in each “word”.

by Neng-Fa Zhou at Kyutech 30

An Example

go:-

Vars=[X1,X2,…,X16],

Vars :: 1..9,

word([X1,X2],5),

word([X3,X4,X5,X6],17),

…

word([X10,X14],3),

labeling(Vars),

writeln(Vars).

word(L,Sum):-

sum(L) #= Sum,

all_different(L).

X1 X2

X3

X7 X10

X6X5X4

X16

X11

X9X8

X14X13X12

X15

A Kakuro puzzle

by Neng-Fa Zhou at Kyutech 31

Break the Code Down

sum(L) #= Sum

The sum of the elements in L makes Sum.

e.g., sum([X1,X2,X3]) #= Y is the same as

X1+X2+X3 #= Y.

all_different(L)

Every element in L is different.

by Neng-Fa Zhou at Kyutech 32

The Knapsack Problem

 A smuggler has a knapsack of 9 units. He can smuggle in

bottles of whiskey of size 4 units, bottles of perfume of

size 3 units, and cartons of cigarettes of size 2 units. The

profit of smuggling a bottle of whiskey, a bottle of

perfume or a carton of cigarettes is 15, 10 and 7,

respectively. If the smuggler will only take a trip, how can

he take to make the largest profit?

go:-

[W,P,C] :: 0..9,

4*W+3*P+2*C #=< 9,

maxof(labeling([W,P,C]),15*W+10*P+7*C),

writeln([W,P,C]).

by Neng-Fa Zhou at Kyutech 33

Break the Code Down

maxof(Goal,Exp)

Find an instance of Goal that is true and

maximizes Exp.

by Neng-Fa Zhou at Kyutech 34

Exercises

1. Tickets to a carnival cost 250 JPY for students and 400

JPY for adults. If a group buys 10 tickets for a total of

3100 JPY, how many of the tickets are for students?

2. The product of the ages, in years, of three teenagers is

4590. None of the teens are the same age. What are the

ages of the teenagers?

3. Suppose that you have 100 pennies, 100 nickels, and 100

dimes. Using at least one coin of each type, select 21

coins that have a total value of exactly $1.00. How many

of each type did you select?

by Neng-Fa Zhou at Kyutech 35

Exercises (Cont.)

4. If m and n are positive integers, neither of which

is divisible by 10, and if mn = 10,000, find the

sum m+n.

5. The arithmetic cryptographic puzzle: Find distinct digits

for S, E, N, D, M, O, R, Y such that S and M are non-

zero and the equation SEND+MORE=MONEY is

satisfied.

6. A magic square of order 3x3 is an arrangement of

integers from 1 to 9 such that all rows, all columns, and

both diagonals have the same sum.

by Neng-Fa Zhou at Kyutech 36

Exercises (Cont.)

7. Place the numbers 2,3,4,5,6,7,8,9,10 in the boxes so that

the sum of the numbers in the boxes of each of the four

circles is 27.

8. Sudoku puzzle.

by Neng-Fa Zhou at Kyutech 37

Exercises (Cont.)

9. A factory has four workers w1,w2,w3,w4 and four

products p1,p2,p3,p4. The problem is to assign workers

to products so that each worker is assigned to one

product, each product is assigned to one worker, and the

profit maximized. The profit made by each worker

working on each product is given in the matrix.

p p p p

w

w

w

w

1 2 3 4

1 7 1 3 4

2 8 2 5 1

3 4 3 7 2

4 3 1 6 3

Profit matrix is:

by Neng-Fa Zhou at Kyutech 38

Review of CLP(FD)

Declaration of domain variables
• X :: L..U

• [X1,X2,...,Xn] :: L..U

Constraints
• Exp R Exp (

– R is one of the following: #=, #¥=, #>, #>=, #<, #=<

– Exp may contain +, -, *, /, //, mod, sum, min, max

• all_different(L)

Labeling
• labeling(L)

• minof(labeling(L),Exp) and maxof(labeling(L),Exp)

by Neng-Fa Zhou at Kyutech 39

CLP(FD) by Example (II)

The graph coloring problem

The N-queens problem

The magic square problem

Exercises

by Neng-Fa Zhou at Kyutech 40

Graph Coloring

Given a graph G=(V,E) and a set of colors,

assign a color to each vertex in V so that no

two adjacent vertices share the same color.
The map of Kyushu

Fukuoka

Kagoshima

Kumamoto

Miyazaki

Nagasaki

Oita

Saga

by Neng-Fa Zhou at Kyutech 41

Color the Map of Kyushu

Atoms

– red, blue, purple

go:-

Vars=[Cf,Cka,Cku,Cm,Cn,Co,Cs],

Vars :: [red,blue,purple],

Cf #¥= Cs,

Cf #¥= Co,

…

labeling(Vars),

writeln(Vars).

by Neng-Fa Zhou at Kyutech 42

The N-Queens Problem

 Find a layout for the N queens on an NxN chessboard so that no queens

attack each other. Two queens attack each other if they are placed in the

same row, the same column, or the same diagonal.

Qi: the number of the row for the ith queen.

for each two different variables Qi and Qj

Qi #¥= Qj %not same row

abs(Qi-Qj) #¥= abs(i-j) %not same diagonal

by Neng-Fa Zhou at Kyutech 43

The N-Queens Problem (Cont.)
http://probp.com/examples/foreach/queens.pl

queens(N):-

length(Qs,N),

Qs :: 1..N,

foreach(I in 1..N-1, J in I+1..N,

(Qs[I] #¥= Qs[J],

abs(Qs[I]-Qs[J]) #¥= J-I)),

labeling_ff(Qs),

writeln(Qs).

by Neng-Fa Zhou at Kyutech 44

Break the Code Down

 length(L,N)

 foreach(I1 in D1,…,In in Dn,Goal)

Array access notation A[I1,…,In]

?-length([a,b,c],N)

N = 3

?-length(L,3)

L = [_310,_318,_320]

?-L=[a,b,c],foreach(E in L, writeln(E))

by Neng-Fa Zhou at Kyutech 45

Break the Code Down

labeling_ff(L)

– Label the variables in L by selecting first a

variable with the smallest domain. If there are

multiple variables with the same domain size,

then choose the left-most one (First-fail

principle).

by Neng-Fa Zhou at Kyutech 46

Magic Square

 A magic square of order NxN is an arrangement of integers

from 1 to N2 such that all rows, all columns, and both

principal diagonals have the same sum

X11 X12 … X1n

…

Xn1 Xn2 … Xnn

by Neng-Fa Zhou at Kyutech 47

Magic Square (Cont.)
http://probp.com/examples/foreach/magic.pl

go(N):-

new_array(Board,[N,N]),

NN is N*N,

Vars @= [Board[I,J] : I in 1..N, J in 1..N],

Vars :: 1..NN,

Sum is NN*(NN+1)//(2*N),

foreach(I in 1..N,

sum([Board[I,J] : J in 1..N]) #= Sum),

foreach(J in 1..N,

sum([Board[I,J] : I in 1..N]) #= Sum),

sum([Board[I,I] : I in 1..N]) #= Sum,

sum([Board[I,N-I+1] : I in 1..N]) #= Sum,

all_different(Vars),

labeling([ffc],Vars),

writeln(Board).

by Neng-Fa Zhou at Kyutech 48

Break the Code Down

List comprehension

– Calls to @=/2

– Arithmetic constraints

[T : E1 in D1, . . ., En in Dn,Goal]

?- L @= [X : X in 1..5].

L=[1,2,3,4,5]

?-L @= [(A,I): A in [a,b], I in 1..2].

L= [(a,1),(a,2),(b,1),(b,2)]

sum([A[I,J] : I in 1..N, J in 1..N]) #= N*N

by Neng-Fa Zhou at Kyutech 49

Exercises

1. Write a CLP(FD) program to test if the

map of Japan is 3-colorable (can be

colored with three colors).

2. Write a program in your favorite language

to generate a CLP(FD) program for

solving the magic square problem.

by Neng-Fa Zhou at Kyutech 50

Exercises (Cont.)

3. Find an integer programming problem and

convert it into CLP(FD).

4. Find a constraint satisfaction or

optimization problem and write a

CLP(FD) program to solve it.

by Neng-Fa Zhou at Kyutech 51

CLP(Boolean): A Special Case of

CLP(FD)

by Neng-Fa Zhou at Kyutech 52

CLP(FD) by Example (III)

Maximum flow

Scheduling

Traveling salesman problem (TSP)

Planning

Routing

Protein structure predication

by Neng-Fa Zhou at Kyutech 53

Maximum Flow Problem

 Given a network G=(N,A) where N is a set

of nodes and A is a set of arcs. Each arc (i,j)

in A has a capacity Cij which limits the

amount of flow that can be sent throw it.

Find the maximum flow that can be sent

between a single source and a single sink.

by Neng-Fa Zhou at Kyutech 54

Maximum Flow Problem (Cont.)

Capacity matrix

by Neng-Fa Zhou at Kyutech 55

Maximum Flow Problem (Cont.)
go:-

Vars=[X12,X13,X14,X27,X32,X36,X43,

X45,X58,X62,X65,X68,X76,X78],

X12 :: 0..3, X13 :: 0..2, X14 :: 0..3,

X27 :: 0..5, X32 :: 0..1, X36 :: 0..1,

X43 :: 0..2, X45 :: 0..2, X58 :: 0..5,

X62 :: 0..4, X65 :: 0..5, X68 :: 0..1,

X76 :: 0..2, X78 :: 0..3,

X12+X32+X62-X27 #= 0,

X13+X43-X32-X36 #= 0,

X14-X43-X45 #= 0,

X45+X65-X58 #= 0,

X36+X76-X62-X65-X68 #= 0,

X27-X76-X78 #= 0,

Max #= X58+X68+X78,

maxof(labeling(Vars),Max),

writeln(sol(Vars,Max)).

Other Network Problems

Routing

– Find routes from sources and sinks in a graph

Upgrading

– Upgrade nodes in a network to meet certain

performance requirement with the minimum

cost

Tomography

– Determine the paths for probing packages

by Neng-Fa Zhou at Kyutech 56

by Neng-Fa Zhou at Kyutech 57

Scheduling Problem

 Four roommates are subscribing to four newspapers. The following
gives the amounts of time each person spend on each newspaper:

Akiko gets up at 7:00, Bobby gets up at 7:15, Cho gets up at 7:15, and
Dola gets up at 8:00. Nobody can read more than one newspaper at a
time and at any time a newspaper can be read by only one person.
Schedule the newspapers such that the four persons finish the
newspapers at an earliest possible time.

Person/Newspaper/Minutes

===

Person || Asahi | Nishi | Orient | Sankei

Akiko || 60 | 30 | 2 | 5

Bobby || 75 | 3 | 15 | 10

Cho || 5 | 15 | 10 | 30

Dola || 90 | 1 | 1 | 1

by Neng-Fa Zhou at Kyutech 58

Scheduling Problem (Cont.)

Variables

– For each activity, a variable is used to represent the start
time and another variable is used to represent the end time.

• A_Asahi : The start time for Akiko to read Asahi

• EA_Asahi: The time when Akiko finishes reading Asahi

Constraints

– A_Asahi #>= 7*60 : Akiko gets up at 7:00

– Nobody can read more than one newspaper at a time

– A newspaper can be read by only one person at a time

The objective function

– Minimize the maximum end time

by Neng-Fa Zhou at Kyutech 59

Scheduling Problem (Cont.)

go:-

Vars = [A_Asahi,A_Nishi,A_Orient,A_Sankei,…],

A_Asahi #>= 7*60, A_Nishi #>= 7*60, …

B_Asahi #>=7*60+15, B_Nishi #>= 7*60+15, …

…

cumulative([A_Asahi,A_Nishi,A_Orient,A_Sankei],

[60,30,2,5],[1,1,1,1],1),

…

EA_Asahi #= A_Asahi+60, EA_Nishi #= A_Nishi+30,

…

max([EA_Asahi,EA_Nishi,…]) #= Max,

minof(labeling(Vars),Max),

writeln(Vars).

by Neng-Fa Zhou at Kyutech 60

Break the Code Down

 cumulative(Starts,Durations,Resources,Limit)

Let Starts be [S1,S2,...,Sn], Durations be [D1,D2,...,Dn] and

Resources be [R1,R2,...,Rn]. For each job i, Si represents the start

time, Di the duration, and Ri the units of resources needed. Limit is

the units of resources available at any time.

The jobs are mutually disjoint when Resources is [1,…,1] and

Limit is 1.

Si #>= Sj+Dj #¥/ Sj #>= Si+Di (for i,j=1..n, i j)

by Neng-Fa Zhou at Kyutech 61

Traveling Salesman Problem

Given an undirected graph G=(V,E), where

V is the set of nodes and E the set of edges,

each of which is associated with a positive

integer indicating the distance between the

two nodes, find a shortest possible

Hamiltonian cycle that connects all the

nodes.

by Neng-Fa Zhou at Kyutech 62

Traveling Salesman Problem

(Cont.)
go:-

max_node_num(N), % Nodes are numbered 1,2, …, N

length(Vars,N),

decl_domains(Vars,1),

circuit(Vars),

findall(edge(X,Y,W),edge(X,Y,W),Edges),

collect_weights(Edges,Vars,Weights),

TotalWeight #= sum(Weights),

minof(labeling_ff(Vars),TotalWeight,writeln((Vars,TotalWeight))).

decl_domains([],_).

decl_domains([Var|Vars],X):-

findall(Y,edge(X,Y,_),Ys),

Var :: Ys,

X1 is X+1,

decl_domains(Vars,X1).

collect_weights([],_,[]).

collect_weights([edge(X,Y,W)|Es],Vars,[B*W|Ws]):-

nth(X,Vars,NX),

nth(Y,Vars,NY),

B #<=> (NX#=Y #¥/ NY#=X),

collect_weights(Es,Vars,Ws).

by Neng-Fa Zhou at Kyutech 63

Break the Code Down

circuit(L)

Let L=[X1,X2,…,Xn]. A valuation

satisfies the constraint if 1->X1,2->X2,

…, n->Xn forms a Hamilton cycle.

minof(Goal,Obj,Report)

Call Report each time a solution is found.

Reification constraints
B #<=> (NX#=Y #¥/ NY#=X),

by Neng-Fa Zhou at Kyutech 64

Planning

Blocks world problem

by Neng-Fa Zhou at Kyutech 65

Planning (Cont.)

States and variables (m blocks and n states)

S1 S2 … Sn

Si=(Bi1,Bi2,…,Bim)

Bij = k (block j is on top of block k,

block 0 means the table)

Constraints

– Every transition Si -> Si+1 must be valid.

by Neng-Fa Zhou at Kyutech 66

Channel Routing

N1={t(1),b(3)}

N2={b(1),t(2)}

by Neng-Fa Zhou at Kyutech 67

Channel Routing (Cont.)

Variables

– For each net, use two variables L and T to

represent the layer and track respectively

Constraints

– No two line segments can overlap

Objective functions

– Minimize the length (or areas) of wires

by Neng-Fa Zhou at Kyutech 68

Protein Structure Predication

by Neng-Fa Zhou at Kyutech 69

Protein Structure Predication

(Cont.)

Variables

– Let R=r1,…,rn be a sequence of residues. A structure of

R is represented by a sequence of points in a three-

dimensional space p1,…,pn where pi=<xi,yi,zi>.

Constraints

– A structure forms a self-avoiding walk in the space

The objective function

– The energy is minimized

70

Demo

B-Prolog version 7.4

– CLP(FD)+ CGLIB

– www.probp.com/examples.htm

NJPLS-10-4, N.F. Zhou

by Neng-Fa Zhou at Kyutech 71

Constraint Systems

CLP systems

– B-Prolog

– BNR-Prolog

– CHIP

– CLP(R)

– ECLiPSe - CISCO

– GNU-Prolog

– IF/Prolog

– Prolog-IV

– SICStus

 Other systems
– 2LP

– ILOG solver

– OPL

– Oz

– Gcode

– Choco

 More information
– Languages & compilers

– Logic programming

– Constraint programming

by Neng-Fa Zhou at Kyutech 72

Major References

 B-Prolog virtual machine

– N.F. Zhou: Parameter Passing and Control Stack Management in Prolog
Implementation Revisited, ACM TOPLAS, 1996.

– N.F. Zhou: The Language Features and Architecture of B-Prolog, TPLP
special issue, 2011.

 Action rules and constraint solving

– N.F. Zhou: Programming Finite-Domain Constraint Propagators in Action
Rules, TPLP, 2006.

– N.F. Zhou: Encoding Table Constraints in CLP(FD) Based on Pair-wise
AC, ICLP, 2009.

 Tabling

– N.F. Zhou: T. Sato and Y.D. Shen: Linear Tabling Strategies and
Optimizations, TPLP, 2008.

– N.F. Zhou: Y. Kameya and T. Sato, Mode-directed Tabling for …, Tools
for Artificial Intelligence, 2010. (submitted)

