
Linear Tabling Strategies and Optimizations

NENG-FA ZHOU

CUNY Brooklyn College & Graduate Center

TAISUKE SATO

Tokyo Institute of Technology

and

YI-DONG SHEN

Chinese Academy of Sciences

Recently there has been a growing interest of research in tabling in the logic programming com-
munity because of its usefulness in a variety of application domains including program analysis,
parsing, deductive database, theorem proving, model checking, and logic-based probabilistic learn-
ing. The main idea of tabling is to memorize the answers to some subgoals and use the answers
to resolve subsequent variant subgoals. Early resolution mechanisms proposed for tabling such as
OLDT and SLG rely on suspension and resumption of subgoals to compute fixpoints. Recently,
a fundamentally different resolution framework called linear tabling, envisioned by the authors
and some other researchers, has received considerable attention because of its simplicity, ease of
implementation, and good space efficiency. Linear tabling is a framework from which different
methods can be derived based on the strategies used in handling looping subgoals. One decision
concerns when answers are consumed and returned. This paper describes two strategies, namely,
lazy and eager strategies, and compare them both qualitatively and quantitatively. The results
indicate that, while the lazy strategy has good locality and is well suited for finding all solutions,
the eager strategy is comparable in speed with the lazy strategy and is well suited for programs
with cuts. Linear tabling relies on depth-first iterative deepening rather than suspension to com-
pute fixpoints. Each cluster of inter-dependent subgoals as represented by a top-most looping
subgoal is iteratively evaluated until no subgoal in it can produce any new answers. Naive re-
evaluation of all looping subgoals, albeit simple, may be computationally unacceptable. In this
paper, we introduce semi-naive optimization, an effective technique employed in bottom-up eval-
uation of logic programs to avoid redundant joins of answers, into linear tabling. We give the
conditions for the technique to be safe (i.e. sound and complete) and propose an optimization
technique called early answer promotion to enhance its effectiveness. Benchmarking in B-Prolog
demonstrates that with this optimization liner tabling compares favorably well in speed with the
state-of-the-art implementation of OLDT.

The preliminary results of this article appear in ACM PPDP’03 and PPDP’04.
Neng-Fa Zhou is supported in part by RF-CUNY and CUNY Software Institute, Taisuke Sato is
supported in part by CREST, and Yi-Dong Shen is supported in part by the National Natural
Science Foundation of China.
Authors’ addresses: N.F. Zhou, Department of Computer and Information Science, CUNY Brook-
lyn College,2900 Bedford Avenue, Brooklyn, NY 11210-2889; email:zhou@sci.brooklyn.cuny.edu;
T. Sato, Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Ookayama
Meguro-ku Tokyo Japan 152-8552; email:sato@cs.titech.ac.jp; Y.D. Shen, Laboratory of Com-
puter Science, Institute of Software, Chinese Academy of Sciences in Beijing, China; email:
ydshen@ios.ac.cn.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 1999 ACM 0164-0925/99/0100-0111 $00.75

Linear Tabling Strategies and Optimizations

2 · N-F. Zhou, T. Sato, and Y-D. Shen

Categories and Subject Descriptors: D.1.6 [Programming Techniques]: Logic Programming;

D.3.4 [Programming Languages]: Processors—compilers

General Terms: Experimentation, Languages

Additional Key Words and Phrases: Prolog, Semi-naive optimization, Abstract machine, Recur-
sion, Tabling, Memoization, Linear tabling

1. INTRODUCTION

The SLD resolution used in Prolog may not be complete or efficient for programs
in the presence of recursion. For example, for a recursive definition of the transitive
closure of a relation, a query may never terminate under SLD resolution if the pro-
gram contains left-recursion or the graph represented by the relation contains cycles
even if no rule is left-recursive. For a natural definition of the Fibonacci function,
the evaluation of a subgoal under SLD resolution spawns an exponential number
of subgoals, many of which are variants. The lack of completeness and efficiency in
evaluating recursive programs is problematic: novice programmers may lose confi-
dence in writing declarative programs that terminate and real programmers have to
reformulate a natural and declarative formulation to avoid these problems, resulting
in cluttered programs.

Tabling [Tamaki and Sato 1986; Warren 1992] is a technique that can get rid of
infinite loops for bounded-term-size programs and redundant computations in the
execution of recursive programs. The main idea of tabling is to memorize the an-
swers to subgoals and use the answers to resolve their variant descendents. Tabling
helps narrow the gap between declarative and procedural readings of logic pro-
grams. It not only is useful in the problem domains that motivated its birth, such
as program analysis [Dawson et al. 1996], parsing [Eisner et al. 2004; Johnson 1995;
Warren 1999], deductive database [Liu 1999; Ramakrishnan and Ullman 1995; Sag-
onas et al. 1994], and theorem proving [Nielson et al. 2004; Pientka 2003], but also
has been found essential in several other problem domains such as model checking
[Ramakrishnan 2002] and logic-based probabilistic learning[Sato and Kameya 2001;
Zhou et al. 2003]. This idea of caching previously calculated solutions, called memo-
ization, was first used to speed up the evaluation of functions [Michie 1968]. OLDT
[Tamaki and Sato 1986] is the first resolution mechanism that accommodates the
idea of tabling in logic programming and XSB is the first Prolog system that suc-
cessfully supports tabling [Sagonas and Swift 1998]. Tabling has become a practical
technique thanks to the availability of large amounts of memory in computers. It
has become an embedded feature in a number of other logic programming systems
such as ALS [Guo and Gupta 2001], B-Prolog [Zhou et al. 2000; Zhou et al. 2004],
Mercury, and YAP [Rocha et al. 2005].

OLDT is non-linear in the sense that the state of a consumer must be preserved
before execution backtracks to its producer. This non-linearity requires freezing
stack segments [Sagonas and Swift 1998] or copying stack segments into a different
area [Demoen and Sagonas 1999] before backtracking takes place. Linear tabling
is an alternative effective tabling scheme [Shen et al. 2001; Zhou et al. 2000; Zhou
and Sato 2003; Zhou et al. 2004]. The main idea of linear tabling is to use iterative

Linear Tabling Strategies and Optimizations,

Linear Tabling Strategies and Optimizations · 3

computation of looping subgoals rather than suspension and resumption of them
as is done in OLDT to compute fixpoints. The DRA method proposed in [Guo and
Gupta 2001] is based on the same idea but employs different strategies for handling
looping subgoals and clauses. In linear tabling, a cluster of inter-dependent subgoals
as represented by a top-most looping subgoal is iteratively evaluated until no subgoal
in it can produce any new answers. Linear tabling is relatively easy to implement
on top of a stack machine thanks to its linearity, and is more space efficient than
OLDT since the states of subgoals need not be preserved.

Linear tabling is a framework from which different methods can be derived based
on the strategies used in handling looping subgoals. One decision concerns when
answers are consumed and returned. The lazy strategy postpones the consumption
of answers until no answers can be produced. It is in general space efficient because
of its locality and is well suited for all-solution search programs. The eager strategy,
in contrast, prefers answer consumption and return to production. It is well suited
for programs with cuts. This paper gives a comprehensive analysis of these two
strategies and compares their performance experimentally.

Linear tabling relies on iterative evaluation of top-most looping subgoals to com-
pute fixpoints. Naive re-evaluation of all looping subgoals may be computationally
expensive. Semi-naive optimization is an effective technique used in bottom-up
evaluation of Datalog programs [Bancilhon and Ramakrishnan 1986; Ullman 1988].
It avoids redundant joins by ensuring that the join of the subgoals in the body of
each rule must involve at least one new answer produced in the previous round.
The impact of semi-naive optimization on top-down evaluation had been unknown
before [Zhou et al. 2004]. In this paper, we also propose to introduce semi-naive
optimization into linear tabling. We have made efforts to properly tailor semi-
naive optimization to linear tabling. In our semi-naive optimization, answers for
each tabled subgoal are divided into three regions as in bottom-up evaluation, but
answers are consumed sequentially not incrementally so that answers produced in
a round are consumed in the same round. We have found that incremental con-
sumption of answers does not fit linear tabling since it may require more rounds
of iteration to reach fixpoints. Nevertheless, consuming answers incrementally may
cause redundant consumption of answers. We further propose a technique called
early promotion of answers to reduce redundant consumption of answers. Our
benchmarking shows that this technique gives significant speed-ups to some pro-
grams.

An efficient tabling system has been implemented in B-Prolog,1 in which the lazy
strategy is employed by default but the eager strategy can be used for subgoals that
are in the scopes of cuts or are not required to return all the answers. Our tabling
system not only consumes an order of magnitude less stack space than XSB for
some programs but also compares favorably well with XSB in speed.

The remainder of the paper is structured as follows: In the next section we define
the terms used in this paper. In Section 3 we give the linear tabling framework and
the two answer consumption strategies. In Section 4 we introduce semi-naive opti-
mization into linear tabling and prove its completeness. In Section 5 we describe
the implementation of our tabling system and also show how to implement cuts.

1www.bprolog.com

Linear Tabling Strategies and Optimizations,

4 · N-F. Zhou, T. Sato, and Y-D. Shen

In Section 6 we compare the tabling strategies experimentally, evaluate the effec-
tiveness of semi-naive optimization, and also compare the performance of B-Prolog
with XSB. In Section 7 we survey the related work and in Section 8 we conclude
the paper.

2. PRELIMINARIES

In this section we give the definitions of the terms to make this paper as much
self-contained as possible. The reader is referred to [Lloyd 1988] for a description
of SLD resolution.

Let P be a program. Tabled predicates in P are explicitly declared and all the
other predicates are assumed to be non-tabled. A subgoal of a tabled predicate is
called a tabled subgoal. Tabled predicates are transformed into a form that facilitates
execution: each rule ends with a dummy subgoal named memo(H) where H is the
head, and each tabled predicate contains a dummy ending rule whose body contains
only one subgoal named check completion(H). For example, given the definition of
the transitive closure of a relation,

p(X,Y):-p(X,Z),e(Z,Y).

p(X,Y):-e(X,Y).

The transformed predicate is as follows:

p(X,Y):-p(X,Z),e(Z,Y),memo(p(X,Y)).

p(X,Y):-e(X,Y),memo(p(X,Y)).

p(X,Y):-check_completion(p(X,Y)).

A table is used to record subgoals and their answers. For each subgoal and its
variants, there is an entry in the table that stores the state of the subgoal (e.g.,
complete or not) and an answer table for holding the answers generated for the
subgoal. Initially, the answer table is empty.

Definition 1. Let G = (A1, A2, ..., Ak) be a goal. The first subgoal A1 is called
the selected subgoal of the goal. G′ is derived from G by using a tabld answer F if
there exists a unifier θ such that A1θ = F and G′ = (A2, ..., Ak)θ. G′ is derived from
G by using a rule “H : −B1, ..., Bm” if A1θ = Hθ and G′ = (B1, ..., Bm, A2, ..., Ak)θ.
A1 is said to be the parent of B1, ..., and Bm. The relation ancestor is defined
recursively from the parent relation.

Definition 2. A tabled subgoal that occurs first in the construction of an SLD
tree is called a pioneer, and all subsequent variants are called followers of the
pioneer. Let G0 be a given goal, and G0 ⇒ G1 ⇒ . . . ⇒ Gn be a derivation where
each goal is derived from the goal immediately preceding it. Let Gi ⇒ . . . ⇒ Gj

be a sub-sequence of the derivation where Gi = (A...) and Gj = (A′...). The sub-
sequence forms a loop if A and A′ are variants. The subgoals A and A′ are called
looping subgoals. In particular, A is called the pioneer looping subgoal and A′ is
called the follower looping subgoal of the loop.

Notice that the pioneer and follower looping subgoals are not required to have the
ancestor-descendent relationship, and thus a loop may not be a real loop [Shen et al.
2001]. Consider, for example, the goal “p(X), p(Y)” where p is defined by facts.

Linear Tabling Strategies and Optimizations,

Linear Tabling Strategies and Optimizations · 5

 ��

Fig. 1. A top-most looping subgoal.

The derivation “p(X), p(Y)” ⇒ p(Y) is treated as a loop although the selected
subgoal p(Y) in the second goal is not a descendant of p(X).

Definition 3. A subgoal A is said to be dependent on another subgoal A′ if A′

occurs in a derivation of A. Two subgoals are said to be inter-dependent if they
occur in each other’s derivations. Inter-dependent subgoals constitute a cluster.
A subgoal in a cluster is called the top-most subgoal of the cluster if none of its
ancestors is included in the cluster.

Unless a cluster contains only a single subgoal, its top-most subgoal must also
be a looping subgoal. For example, the subgoals at the nodes in the SLD tree in
Figure 1 constitute a cluster and the subgoal p at node 1 is the top-most looping
subgoal of the cluster.

3. LINEAR TABLING AND ANSWER CONSUMPTION STRATEGIES

Linear tabling takes a transformed program and a goal, and tries to find a path
in the SLD tree that leads to an empty goal. The primitive table start(A) is
executed when a tabled subgoal A is encountered. Just as in SLD resolution, linear
tabling explores the SLD tree in a depth-first fashion, taking special actions when
table start(A), memo(A), and check completion(A) are encountered. Backtracking
is done in exactly the same way as in SLD resolution. When the current path
reaches a dead end, meaning that no action can be taken on the selected subgoal,
execution backtracks to the latest previous goal in the path and continues with an
alternative branch. When execution backtracks to a top-most looping subgoal of
a cluster, however, we cannot fail the subgoal even after all the alternative clauses
have been tried. In general, the evaluation of a top-most looping subgoal must be
iterated until its fixpoint is reached. We call each iteration of a top-most looping
subgoal a round.

Various linear tabling methods can be devised based on the framework. A linear
tabling method comprises strategies used in the three primitives: table start(A),
memo(A), and check completion(A). In linear tabling, a pioneer subgoal has two

Linear Tabling Strategies and Optimizations,

6 · N-F. Zhou, T. Sato, and Y-D. Shen

roles: one is to produce answers into the table and the other is to return answers
to its parent through its variables. Different strategies can be used to produce and
return answers. The lazy strategy gives priority to answer production and the eager
strategy prefers answer consumption to production. In the following we define the
three primitives in both strategies.

3.1 The lazy strategy

The lazy strategy postpones the consumption of answers until no answers can be
produced. In concrete, for top-most looping subgoals no answer is returned until
they are complete, and for other pioneer subgoals answers are consumed only after
all the rules have been tried.

3.1.1 table start(A). This primitive is executed when a tabled subgoal A is
encountered. The subgoal A is registered into the table if it is not registered yet.
If A’s state is complete meaning that A has been completely evaluated before, then
A is resolved by using the answers in the table.

If A is a pioneer, meaning that it is encountered for the first time in the current
path, then different actions are taken depending on A’s state. If A’s state is visited
meaning that A has occurred before in a different path during the current round,
then it is resolved by using answers. Otherwise, if A has never occurred before
during the current round, it is resolved by using rules. In this way, a pioneer
subgoal needs to be evaluated only once in each round.

If A is a follower of some ancestor A0, meaning that a loop has been encoun-
tered,2 then it is resolved by using the answers in the table. After the answers are
exhausted, A fails. Failing A is unsafe in general since it may have not returned all
of its possible answers. For this reason, the top-most looping subgoal of the cluster
of A needs be iterated until no new answer can be produced.

3.1.2 memo(A). This primitive is executed when an answer is found for the
tabled subgoal A. If the answer A is already in the table, then just fail; otherwise
fail after the answer is added into the table. The failure of memo postpones the
return of answers until all rules have been tried.

3.1.3 check completion(A). This primitive is executed when the subgoal A is
being resolved by using rules and the dummy ending rule is being tried. If A has
never occurred in a loop, then A’s state is set to complete and A is failed after all
the answers are consumed.

If A is a top-most looping subgoal, we check if any new answers are produced
during the last round of evaluation of the cluster under A. If so, A is re-evaluated
by calling table start(A) after all the dependent subgoals’s states are initialized.
Otherwise, if no new answer is produced, A is resolved by using answers after its
state and all its dependent subgoals’ states are set to complete. Notice that a
top-most looping subgoal does not return any answers until it is complete.

If A is a looping subgoal but not a top-most one, A will be resolved by using an-
swers after its state is set to visited. Notice that A’s state cannot be set to complete
since A is contained in a loop whose top-most subgoal has not been completely

2As to be discussed later, A0 must be an ancestor of A under the lazy strategy.

Linear Tabling Strategies and Optimizations,

Linear Tabling Strategies and Optimizations · 7

evaluated. For example, in Figure 1, q reaches its fixpoint only after the top-most
looping subgoal p reaches its fixpoint.

As described in the definition of table start(A), a visited subgoal is never eval-
uated using rules again in the same round. This optimization is called subgoal
optimization in [Zhou and Sato 2003]. If evaluating a subgoal produces some new
answers then the top-most looping subgoal will be re-evaluated and so will the sub-
goal; and if evaluating a subgoal does not produce any new answer, then evaluating
it again in the same round would not produce any new answers either. Therefore,
the subgoal optimization is safe.

3.1.4 Example. Consider the following program, where p/2 is tabled, and the
query p(a,Y0).

p(X,Y):-p(X,Z),e(Z,Y),memo(p(X,Y)). (p1)

p(X,Y):-e(X,Y),memo(p(X,Y)). (p2)

p(X,Y):-check_completion(p(X,Y)). (p3)

e(a,b).

e(b,c).

The following shows the steps that lead to the production of the first answer:

1: p(a,Y0)

⇓apply p1

2: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

loop found, backtrack to goal 1

1: p(a,Y0)

⇓ apply p2

3: e(a,Y0),memo(p(a,Y0))
⇓ apply e(a,b)

4: memo(p(a,b))

⇓ add answer p(a,b)

After the answer p(a,b) is added into the table, memo(p(a,b)) fails. The failure
forces execution to backtrack to p(a,Y0).

1: p(a,Y0)

⇓ apply p3

5: check completion(p(a,Y0))

Since p(a,Y0) is a top-most looping subgoal which has not been completely evalu-
ated yet, check completion(p(a,Y0)) does not consume the answer in the table
but instead starts re-evaluation of the subgoal.

1: p(a,Y0)

⇓apply p1

6: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

⇓use answer p(a,b)

7: e(b,Y0),memo(p(a,Y0))
⇓apply e(b,c)

8: memo(p(a,c))

Linear Tabling Strategies and Optimizations,

8 · N-F. Zhou, T. Sato, and Y-D. Shen

When the follower p(a,Z1) is encountered this time, it consumes the answer p(a,b).
The current path leads to the second answer p(a,c). On backtracking, the goal
numbered 6 becomes the current goal.

6: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

⇓use answer p(a,c)

9: e(c,Y0),memo(p(a,Y0))

Goal 9 fails. Execution backtracks to the top goal and tries the clause p3 on it.

1: p(a,Y0)

⇓ apply p3

10: check completion(p(a,Y0))

Since the new answer p(a,c) is produced in the last round of evaluation, the top-
most looping subgoal p(a,Y0) needs to be evaluated again. The next round of
evaluation produces no new answer and thus the subgoal’s state is set to complete.
After that the top-most subgoal returns the answers p(a,b) and p(a,c).

3.1.5 Properties of the lazy strategy. Under the lazy strategy, answers are not
returned immediately after they are produced but are returned via the table. No
answer is returned for a top-most looping subgoal until the subgoal is complete.

All loops are guaranteed to be real: for any loop Gi = (A . . .) ⇒ . . . ⇒ Gj =
(A′ . . .) where A and A′ are variants, A must be an ancestor of A′. Because each
cluster of inter-dependent subgoals is completely evaluated before any answers are
returned to outside of the cluster, the lazy strategy has good locality and is thus
suited for finding all solutions. For example, when the subgoal p(Y) is encountered
in the goal “p(X),p(Y)”, the subtree for p(X) must have been explored completely
and thus needs not be saved for evaluating p(Y).

The cut operator cannot be handled efficiently under the lazy strategy. The goal
“p(X), !, q(X)” produces all the answers for p(X) even though only one is needed.

The linear tabling framework inherits the main idea from [Shen et al. 2001], i.e.,
iterating the evaluation of top-most looping subgoals until no new answer is pro-
duced, and the lazy stratey adopted does not affect its soundness and completeness.

3.2 The eager strategy

The eager strategy prefers answer consumption and return to production. For a
pioneer, answers are used first and rules are used only after all available answers
are exhausted, and moreover a new answer is returned to its parent immediately
after it is added into the table. The following describes how the three primitives
behave under the eager strategy.

3.2.1 table start(A). Just as in the lazy strategy, A is registered if it is not
registered yet. A is resolved by using the tabled answers if A is complete or A is
a follower of some former variant subgoal. If A is a pioneer, being encountered for
the first time in the current round, it is resolved by using answers first, and then
rules after all existing answers are exhausted.

3.2.2 memo(A). If the answer A is already in the table, then this primitive
fails; otherwise, this primitive succeeds after adding the answer A into the table.

Linear Tabling Strategies and Optimizations,

Linear Tabling Strategies and Optimizations · 9

Notice that A is returned immediately after it is added into the table. If A is not
new, then it must have been returned before.

3.2.3 check completion(A). If A is a top-most looping subgoal, just as in the
lazy strategy, we check whether any new answers are produced during the last
round of evaluation of A. If so, A is evaluated again by calling table start(A).
Otherwise, if no new answer is produced, this primitive fails after A’s and all its
dependent subgoals’ states are set to complete. If A is a looping subgoal but not a
top-most one, this primitive fails after A’s state is set to visited. A visited subgoal
is never evaluated using rules again in the same round. Notice that unlike under
the lazy strategy, the primitive check completion(A) never returns any answers
under the eager strategy. As described above, all the available answers must have
been returned by table start(A) and memo(A) by the time check completion(A)
is executed.

3.2.4 Example. Because of the need to re-evaluate a top-most looping subgoal,
redundant solutions may be observed for a query. Consider, for example, the fol-
lowing program and the query “p(X),p(Y)”.

p(1):-memo(p(1)). (r1)

p(2):-memo(p(2)). (r2)

p(X):-check_completion(p(X)). (r3)

The following derivation steps lead to the return of the first solution (1,1) for
(X,Y).

1: p(X),p(Y)

⇓ use r1

2: memo(p(1)),p(Y)

⇓ add answer p(1)

3: p(Y)

⇓ loop found, use answer p(1)

When the subgoal p(Y) is encountered, it is treated as a follower and is resolved
using the tabled answer p(1). After that the first solution (1,1) is returned to
the top query. When execution backtracks to p(Y), it fails since it is a follower
and no more answer is available in the table. Execution backtracks to p(X), which
produces and adds the second answer p(2) into the table.

1: p(X),p(Y)

⇓ use r2

4: memo(p(2)),p(Y)

⇓ add answer p(2)

5: p(Y)

⇓ use answer p(1)

When p(Y) is encountered this time, there are two answers p(1) and p(2) in the
table. So the next two solutions returned are (2,1) and (2,2). When execution
backtracks to goal 1, the dummy ending rule is applied.

Linear Tabling Strategies and Optimizations,

10 · N-F. Zhou, T. Sato, and Y-D. Shen

1: p(X),p(Y)

⇓ use r3

6: check completion(p(X)),p(Y)

Since new answers are added into the table during this round, the subgoal p(X)
needs to be evaluated again, first using answers and then using rules. The second
round produces no answer but returns the four solutions (1,1), (1,2), (2,1) and
(2,2) among which only (1,1) has not been observed before.

3.2.5 Properties of the eager strategy. Since answers are returned eagerly, a
pioneer and a follower may not have an ancestor-descendant relationship. Because
of the existence of fake loops and the necessity of iterating the evaluation of top-most
looping subgoals, redundant solutions may be observed. In the previous example,
the solutions (1,1), (2,1) and (2,2) are each observed twice. Provided that the
top-most looping subgoal p(X) did not return the answer p(1) again in the second
round, the solution (1,2) would have been lost.

The earger strategy is more suited than the lazy strategy for single-solution
search. For certain applications such as planning it is unreasonable to find all
answers either because the set is infinite or because only one answer is needed.
For these applications the eager strategy is more effective than the lazy one. As
described below in Subsection 5.3, cuts are handled more efficiently with the eager
strategy.

The eager strategy may require more re-computation to reach fixpoints, but its
adoption does not affect the soundness and completeness of linear tabling [Shen
et al. 2001].

4. SEMI-NAIVE OPTIMIZATION

The basic linear tabling framework described in the previous section does not dis-
tinguish between new and old answers. The problem with this naive method is
that it redundantly joins answers of subgoals that have been joined in early rounds.
Semi-naive optimization [Ullman 1988] reduces the redundancy by ensuring that
at least one new answer is involved in the join of the answers for each rule. In
this section, we introduce semi-naive optimization into linear tabling and identify
the necessary conditions for it to be complete. We also propose a technique called
early answer promotion to further avoid redundant consumption of answers. This
optimization works with both the lazy and eager strategies.

4.1 Preparation

To make semi-naive optimization possible, we divide the answer table for each
tabled subgoal into three regions as depicted below:

old previous current

The names of the regions indicate the rounds during which the answers in the
regions are produced: old means that the answers were produced before the previous
round, previous the answers produced during the previous round, and current the
answers produced in the current round. The answers stored in previous and current

Linear Tabling Strategies and Optimizations,

Linear Tabling Strategies and Optimizations · 11

are said to be new. Before each round of evaluation is started, answers are promoted
accordingly: previous answers become old and current answers become previous.

In our optimization, answers are consumed sequentially. For a subgoal, either all
the available answers or only new answers are consumed. This is unlike in bottom-
up evaluation where answers are consumed incrementally, i.e., answers produced
in a round are not consumed until the next round. As will be discussed later,
incremental consumption of answers as is done in bottom-up evaluation does avoid
certain redundant joins but does not fit linear tabling since it may require more
rounds to reach fixpoints.

For a given program, we find a level mapping from the predicate symbols in the
program to the set of integers that represents the call graph of the program. Let m

be a level mapping. We extend the notation to assume that m(p(. . .)) = m(p) for
any subgoal p(. . .).

Definition 4. For a program, a level mapping m represents the call graph if for
each rule “H :−A1, A2, ..., An” in the program, m(H) > m(Ai) iff the predicate of
Ai does not call either directly or indirectly the predicate of H , and m(H) = m(Ai)
iff the predicates of H and Ai occur in a loop in the call graph.

The level mapping as defined divides predicates in a program into several strata.
The predicate at each stratum depends only on those on the lower strata. The
level mapping is an abstract representation of the dependence relationship of the
subgoals that may occur in execution. If two subgoals A and A′ occur in a loop,
them m(A) = m(A′).

Definition 5. Let “H :−A1, ..., Ak, ..., An” be a rule in a program and m be the
level mapping that represents the call graph of the program. Ak is called the last
depending subgoal of the rule if m(Ak) = m(H) and m(H) > m(Ai) for i > k.

The last depending subgoal Ak is the last subgoal in the body that may depend on
the head to become complete. Thus, when the rule is re-executed on a subgoal, all
the subgoals to the right of Ak that have occurred before must already be complete.

Definition 6. Let “H :−A1, ..., An” be a rule in a program and m be a level
mapping that represents the call graph of the program. If there is no depending
subgoal in the body, i.e., m(H) > m(Ai) for i = 1, ..., n, then the rule is called a
base rule.

4.2 Semi-naive optimization

Theorem 1. Let “H :−A1, ..., Ak, ..., An” be a rule where Ak is the last depend-
ing subgoal, and C be a subgoal that is being resolved by using the rule in a round
of evaluation of a top-most looping subgoal T . For a combination of answers of A1,
· · ·, and Ak−1, if C has occurred in an early round and the combination does not
contain any new answers, then it is safe to let Ak consume new answers only.

Proof: Let Akold
and Aknew

be the old and new answers of the subgoal Ak, respec-
tively. For a combination of answers of A1, · · ·, and Ak−1, if the combination does
not contain new answers then the join of the combination and Akold

must have been
done and all possible answers for C that can result from the join must have been
produced during the previous round because the subgoal C has been encountered
before. Therefore only new answers in Aknew

should be used. 2

Linear Tabling Strategies and Optimizations,

12 · N-F. Zhou, T. Sato, and Y-D. Shen

Corollary 1. Base rules need not be considered in the re-evaluation of any
subgoals.

Semi-naive optimization would be unsafe if it were applied to new subgoals that
have never been encountered before. The following example, where all the predi-
cates are assumed to be tabled, illustrates this possibility:

?- p(X,Y).

p(X,Y) :- p(X,Z),q(Z,Y). (C1)

p(b,c) :- p(X,Y). (C2)

p(a,b). (C3)

q(c,d) :- p(X,Y),t(X,Y). (C4)

t(a,b). (C5)

In the first round of p(X,Y) the answer p(a,b) is added to the table by C1, and
in the second round the rule C2 produces the answer p(b,c) by using the answer
produced in the first round. In the third round, the rule C1 generates a new subgoal
q(c,Y) after p(X,Z) consumes p(b,c). If semi-naive optimization were applied to
q(c,Y), then the subgoal p(X,Y) in C4 could consume only the new answer p(b,c)
and the third answer p(b,d) would be lost.

4.3 Analysis

In semi-naive optimization described above, answers produced in the current round
are consumed immediately rather than postponed to the next round as in the
bottom-up version, and answers are promoted each time a new round is started.
This way of consuming and promoting answers may cause certain redundancy.

Consider the conjunction (P, Q). Assume Qo, Qp, and Qc are the sets of answers
in the three regions (respectively, old, previous, and current) of the subgoal Q when
Q is encountered in round i. Assume also that P had been complete before round
i and Pa is the set of answers. The join Pa 1 (Qp

⋃
Qc) is computed for the

conjunction in round i. Assume Q′

o, Q′

p, and Q′

c are the sets of answers in the three
regions when Q is encountered in round i+1. Since answers are promoted before
round i + 1 is started, we have:

Q′

o = Qo

⋃
Qp

Q′

p = Qc

⋃
α

where α denotes the new answers produced for Q after the conjunction (P, Q) in
round i. When the conjunction (P, Q) is encountered in round i + 1, the following
join is computed.

Pa 1 (Q′

p

⋃
Q′

c) = Pa 1 (Qc

⋃
α

⋃
Qc′)

Notice that the join Pa 1 Qc is computed in both round i and i + 1.

Linear Tabling Strategies and Optimizations,

Linear Tabling Strategies and Optimizations · 13

We could allow last depending subgoals to consume answers incrementally as is
done in bottom-up evaluation,3 but doing so may require more rounds to reach
fixpoints. Consider the following example, which is the same as the one shown
above but has a different ordering of clauses:

?- p(X,Y).

p(a,b). (C1)

p(b,c) :- p(X,Y). (C2)

p(X,Y) :- p(X,Z),q(Z,Y). (C3)

q(c,d) :- p(X,Y),t(X,Y). (C4)

t(a,b). (C5)

In the first round, C1 produces the answer p(a,b). When C2 is executed, the
subgoal in the body cannot consume p(a,b) since it is produced in the current
round. Similarly, C3 produces no answer either. In the second round, p(a,b)

is moved to the previous region, and thus can be consumed. C2 produces a new
answer p(b,c). When C3 is executed, no answer is produced since p(b,c) cannot
be consumed. In the third round, p(a,b) is moved to the old region, and p(b,c)

is moved to the previous region. C3 produces the third answer p(b,d). The fourth
round produces no new answer and confirms the completion of the computation.
So in total four rounds are needed to compute the fixpoint. If answers produced
in the current round are consumed in the same round, then only two rounds are
needed to reach the fixpoint.

4.4 Early promotion of answers

As discussed above, sequential consumption of answers may cause redundant joins.
In this subsection, we propose a technique called early promotion of answers to
reduce the redundancy.

Definition 7. Let Q be a follower of some pioneer that first exhausts its answers
in the current round.4 Then all answers of Q in the current region are promoted
to the previous region once being consumed by Q.

Consider again the conjunction (P, Q) where Q is the first follower that exhausts
its answers. The answers in the current region Qc are promoted to the previous
region after Q has consumed all its answers in round i. By doing so, the join
Pa 1 Qc will not be recomputed in round i + 1 since Qc must have been promoted
to the old region in round i + 1.

Consider, for example, the following program:

3No interesting necessary condition has been found to make incremental consumption safe in
linear tabling. During the evaluation of a top-most looping subgoal T another subgoal T ′ may
join the current cluster and become a new top-most looping subgoal. The difficulty of identifying
a necessary condition arise from the fact that an answer old to a subgoal in the cluster of T may
be new to another subgoal in the cluster of T ′.
4If the lazy strategy is used, then Q must be the first follower encountered in this round.

Linear Tabling Strategies and Optimizations,

14 · N-F. Zhou, T. Sato, and Y-D. Shen

?- p(X,Y).

p(a,b). (C1)

p(b,c) :- p(X,Y). (C2)

Before C2 is executed in the first round, p(a,b) is in the current region. Executing
C2 produces the second answer p(b,c). Since the subgoal p(X,Y) in C2 is the first
follower that exhausts its answers in the current round, it is qualified to promote
its answers. So the answers p(a,b) and p(b,c) are moved from the current region
to the previous region immediately after being consumed by p(X,Y). As a result,
the potential redundant consumption of these answers by p(X,Y) are avoided in the
second round of iteration since they will all be transferred to the old region before
the second round starts.

Theorem 2. Early promotion does not lose any answers.

Proof: First note that although answers are tabled in three disjoint regions, all
tabled answers will be consumed except for some last depending subgoals that would
skip the answers in their old regions (see Theorem 1). Assume, on the contrary,
that applying early promotion loses answers. Then there must be a last depending
subgoal Ak in a rule “H :−A1, ..., Ak, ..., An” and a tabled answer A for Ak such
that A has been moved to the old region before being consumed by Ak so that A

will never be consumed by Ak. Assume A is produced in round i. We distinguish
between the following two cases:

(1) The last depending subgoal Ak is not selected in round i. In round j(j > i), Ak

is selected either because H is new or some Ai(i < k) consumes a new answer.
By Theorem 1, Ak will consume all answers in the three regions, including the
answer A.

(2) Otherwise, A must be produced by Ak itself or a variant subgoal of Ak that is
selected either before or after Ak in round i. If A is produced by Ak itself or
before Ak is selected, then the answer will be consumed by Ak since promoted
answers will remain new by the end of the round. If A is produced by a variant
after Ak is selected, then the answer cannot be promoted because Ak exhausts
its answers before the variant. In this case, the answer A will remain new in
the next round and will thus be consumed by Ak.

Both of the above two cases contradict our assumption. The proof then concludes.
2

5. IMPLEMENTATION

Changes to the Prolog machine ATOAM [Zhou 1996] are needed to implement
linear tabling. In this section we describe the changes to the data structures and
the instruction set. We also show how to implement the cut operator.

5.1 Data structures

A new data area, called table area, is introduced for memorizing tabled subgoals
and their answers. The subgoal table is a hash table that stores all the tabled
subgoals encountered in execution. For each tabled subgoal and its variants, there
is an entry in the table that contains the following information:

Linear Tabling Strategies and Optimizations,

Linear Tabling Strategies and Optimizations · 15

Copy

PionnerAR

State

TopMostLoopingSubgoal

DependentSubgoals

AnswerTable

The field Copy points to the copy of the subgoal in the table area. In the copy, all
variables are numbered. Therefore all variants of the subgoal are identical.

The field PionnerAR points to the frame of the pioneer, which is needed for
implementing cuts (described below). When the choice point of a tabled subgoal
is cut off before the subgoal reaches completion, the field PionnerAR will be set to
NULL. When a variant of the subgoal is encountered again after, the subgoal will be
treated as a pioneer.

The field State indicates whether the subgoal is a looping subgoal, whether the
answer table has been revised, and whether the subgoal is complete or visited. When
execution backtracks to a top-most looping subgoal, if the revised bit is set, then
another round of evaluation will be started for the subgoal. A top-most looping
subgoal becomes complete if this revised bit is unset after a round of evaluation.
At that time, the subgoal and all of its dependent subgoals will be set to complete.

The TopMostLoopingSubgoal field points to the entry for the top-most looping
subgoal, and the field DependentSubgoals stores the list of subgoals on which this
subgoal depends. When a top-most looping subgoal becomes complete, all of its
dependent subgoals turn to complete too.

The field AnswerTable points to the answer table for this subgoal, which is also
a hash table. Hash tables expand dynamically.

In ATOAM different structures of frames are used for different types of predicates
[Zhou 1996]. A new frame structure is introduced for tabled predicates. The frame
for a tabled predicate contains the following two slots in addition to those slots
stored in a choice point frame5:

SubgoalTable

CurrentAnswer

The SubgoalTable points to the subgoal table entry, and the CurrentAnswer points
to the last answer that was consumed. The next answer can be reached from this
reference on backtracking.

5.2 Instructions

Three new instructions, namely table start, memo, and check completion, are
introduced into the ATOAM for encoding the three table primitives. The following
shows the compiled code of the transitive closure program:

% p(X,Y):-p(X,Z),e(Z,Y).

% p(X,Y):-e(X,Y).

5A choice point frame has the following slots: AR (parent frame), CPS (continuation program
pointer on success), CPF (continuation program pointer on failure), TOP (top of the control
stack), B (parent choice point), H (top of the heap), and T (top of the trail stack).

Linear Tabling Strategies and Optimizations,

16 · N-F. Zhou, T. Sato, and Y-D. Shen

p/2: table_start 2,1

fork r2

para_value y(2)

para_var y(-13)

call p/2 % p(X,Z)

para_value y(-13)

para_value y(1)

call e/2 % e(Z,Y)

memo

r2: fork r3

para_value y(2)

para_value y(1)

call e/2 % e(X,Y)

memo

r3: check_completion p/2

The table start instruction takes two operands: the arity (2) and the number of
local variables (1). The entrance of the ending rule is taken as an operand so that a
pioneer can know where to go after its choice point is stolen. The check completion

instruction takes the entrance as an operand so that the predicate can be re-entered
when it needs re-evaluation.

5.3 Handling cuts

As discussed in Subsection 3.1.5, the lazy strategy is not suited for tabled programs
with cuts. The goal “p(X), !, q(X)” produces all the answers for p(X) even though
only one is needed. For tabled predicates that contain cuts and tabled subgoals
that are in the scopes of cuts, the eager strategy should be used.6

The cut operator is handled easily. Consider the following rule H:-L,!,R. The
cut discards the choice points created for L. If any tabled subgoals are encountered
during the execution of L, then we need to roll back the choice points of these
subgoals and set the PionnerAR slot of each of the incomplete tabled subgoals
to NULL. When a tabled subgoal that has occurred during the execution of L is
encountered again after the cut, it will be treated as a pioneer not a follower. If
H is a tabled predicate, then the cut sets the backtracking pointer to the dummy
ending clause so all the alternative rules below this one will be skipped.

Consider the following tabled program:

:-eager_consume p/1.

p(1).

p(2).

and the goal

?-p(X),!,p(Y).

The first subgoal p(X) produces the answer p(1) before the cut is encountered.
The cut discards the choice point of p(X) and cut off the relation between p(X)

6In B-Prolog version 6.7, the lazy strategy is adopted by default, but the user can use the directive
:-eager consume to change the strategy.

Linear Tabling Strategies and Optimizations,

Linear Tabling Strategies and Optimizations · 17

tcl: tcl(X,Y):-edge(X,Y).

tcl(X,Y):-tcl(X,Z),edge(Z,Y).

tcr: tcr(X,Y):-edge(X,Y).

tcr(X,Y):-edge(X,Z),tcr(Z,Y).

tcn: tcn(X,Y):-edge(X,Y).

tcn(X,Y):-tcn(X,Z),tcn(Z,Y).

sg: sg(X,X).

sg(X,Y):-edge(X,XX),sg(XX,YY),edge(Y,YY).

Fig. 2. Datalog programs.

and its entry in the table. So when p(Y) is executed, it is treated as a pioneer. The
solutions returned to the top goal are (1,1) and (1,2).

Consider the following tabled predicate with a cut in it:

:-eager_consume p/1.

p(X):-!,p(X).

p(a).

Since there is no subgoal appearing to the left of the cut, the cut just sets the
backtracking pointer to the dummy ending clause. When the subgoal p(X) after
the cut, which is a follower, is encountered, it fails because no answer is available.
When execution backtracks to the pioneer p(X), it completes its evaluation and
fails.

6. PERFORMANCE EVALUATION

In this section, we empirically compare the two answer consumption strategies
and evaluate the effectiveness of semi-naive optimization. We also compare the
performance of B-Prolog (version 6.7) with XSB (version 2.7.1). We use a Linux
machine in the evaluation.

6.1 Benchmarks

We use benchmarks from three different sources: Datalog programs shown in Figure
2, the CHAT benchmark suite [Demoen and Sagonas 1999], and a parser, called
atr, for the Japanese language defined by a grammar of over 860 rules [Uratani
et al. 1994]. The graph used in the transitive-closure programs consists of 100
vertices and 4000 edges, the graph used in the same-generation program consists of
50 vertices and 1561 edges, and the corpus used in the parser contains 10 sentences.
All the benchmarks are available from probp.com/bench.tar.gz.

6.2 Comparison of the two answer-consumption strategies

Table I compares the two answer-consumption strategies on speed and stack space7

efficiencies. The numbers in the parentheses indicate the actual amounts of con-
sumption of CPU time (in milliseconds) and stack space (in bytes). The difference

7The total usage of the local, global and trail stacks.

Linear Tabling Strategies and Optimizations,

18 · N-F. Zhou, T. Sato, and Y-D. Shen

Table I. Comparison of the lazy and eager strategies.

program CPU time Stack space
Lazy Eager Lazy Eager

tcl 1 (120.0) 1.00 1 (232) 1.00
tcr 1 (211.0) 1.01 1 (5800) 1.00
tcn 1 (266.0) 0.94 1 (6916) 1.00
sg 1 (3184.0) 0.87 1 (6992) 1.02

cs o 1 (135.1) 1.30 1 (9400) 1.36
cs r 1 (275.7) 1.17 1 (9400) 1.36
disj 1 (67.8) 1.05 1 (5688) 1.41

gabriel 1 (113.0) 1.01 1 (8764) 1.18
kalah 1 (71.0) 0.96 1 (12260) 2.03
pg 1 (53.1) 2.49 1 (8960) 3.59

peep 1 (329.8) 0.98 1 (6816) 2.88
read 1 (327.1) 0.88 1 (9676) 2.22

atr 1 (730.0) 1.00 1 (21084) 1.06

average 1 1.13 1 1.62

of these two strategies in terms of CPU time is small on average. This result implies
that for programs with cuts declaring the use of the eager strategy would not cause
significant slow-down. The difference in the usage of stack space is more significant
than in CPU time. This is because, as discussed before, the lazy strategy has better
locality than the eager strategy.

6.3 Effectiveness of semi-naive optimization

Table II shows the effectiveness of semi-naive optimization in gaining speed-ups un-
der both strategies. Without this optimization, the system would consume about
40% more CPU time on average under either strategy. Our experiment also indi-
cates that on average over 95% of the gains in speed are attributed to the early
promotion technique.

6.4 Comparison with XSB

Table III compares B-Prolog (BP) with XSB on speed and stack space8 efficiencies.
For XSB the default setting9 is used. BP is faster than XSB for most of the
programs and on average as well, and BP consumes an order-of-magnitude less
stack space than XSB for six of the programs.

The empirical data on the usage of table space are not shown. In BP, both
subgoal and answer tables are maintained as dynamic hashtables and the amount
of table space consumed can be dominated by the initial sizes of the hashtables. In
XSB, in contrast, tables are maintained as tries [Ramakrishnan et al. 1998]. The
usage of the table space should be the same if the same data structure is used.

The necessity of re-evaluating looping subgoals has been blamed for the low speed
of iterative-computation-based tabling systems [Zhou et al. 2000; Guo and Gupta
2001]. Our new findings indicate that re-evaluation is not a dominant factor. Table

8The total usage of the local, global, choice point, and trail stacks for XSB.
9The SLG-WAM and the local scheduling strategy are used in the default setting.

Linear Tabling Strategies and Optimizations,

Linear Tabling Strategies and Optimizations · 19

Table II. Effectiveness of semi-naive optimization.

program CPU time CPU time (without semi)
(with semi) Lazy Eager

tcl 1 1.81 1.83
tcr 1 1.29 1.30
tcn 1 1.80 1.93
sg 1 1.15 1.50

cs o 1 1.15 1.11
cs r 1 1.15 1.13
disj 1 1.56 1.56

gabriel 1 1.34 1.33
kalah 1 1.36 1.50
pg 1 1.33 1.07

peep 1 1.07 1.07
read 1 2.09 1.30

atr 1 1.03 1.03

average 1 1.42 1.38

Table III. Comparison of B-Prolog and XSB.

program BP (Lazy) XSB
CPU time Stack space

tcl 1 1.41 8.62
tcr 1 1.37 33.58
tcn 1 1.19 32.99
sg 1 1.22 109.27

cs o 1 0.90 0.77
cs r 1 0.86 0.93
disj 1 1.03 1.15

gabriel 1 0.76 2.36
kalah 1 1.11 0.75
pg 1 1.11 2.09

peep 1 0.76 3.23
read 1 0.96 11.30

atr 1 1.77 21.87

average 1 1.11 17.61

IV gives the statistics about the maximum (max num. its.) and average (ave.
num. its.) numbers of iterations for tabled subgoals to reach their fixpoints. While
for some programs, the maximum number of iterations performed is high (e.g.,
the maximum number for atr is 6), the average numbers are quite low. These
statistics give an insight into the reason why an implementation of linear tabling
could achieve comparable speed performance with XSB.

7. RELATED WORK

There are three different tabling schemes, namely OLDT [Tamaki and Sato 1986;
Sagonas and Swift 1998], CAT [Demoen and Sagonas 1998], and linear tabling

Linear Tabling Strategies and Optimizations,

20 · N-F. Zhou, T. Sato, and Y-D. Shen

Table IV. Statistics about re-evaluation.
program num. subgoals max num. its. ave. num. its.

tcl 1 2 2.00
tcr 51 2 1.96
tcn 51 2 1.98
sg 153 2 1.32

cs o 76 2 1.14
cs r 76 2 1.16
disj 74 2 1.20

gabriel 59 2 1.20
kalah 102 3 1.24
pg 48 2 1.13

peep 49 3 1.29

read 131 5 1.34

atr 7139 6 1.81

[Shen et al. 1999; 2001; Zhou et al. 2000; Zhou and Sato 2003; Zhou et al. 2004].
SLG [Chen and Warren 1996] is a formalization based on OLDT for computing
well-founded semantics for general programs with negation. These three schemes
differ in the handling of consumers.

In OLDT, a consumer fails after it exhausts all the existing answers and its state
is preserved by freezing the stack so that it can be reactivated after new answers
are generated. The CAT approach does not freeze the stack but instead copies
the stack segments between the consumer and its producer into a separate area so
that backtracking can be done normally. The saved state is reinstalled after a new
answer is generated. CHAT [Demoen and Sagonas 1999] is a hybrid approach that
combines OLDT and CAT.

Linear tabling relies on iterative computation of looping subgoals to compute
fixpoints. Linear tabling is arguably the easiest scheme to implement since no
effort is needed to preserve states of consumers and the garbage collector can be
kept untouched for tabling. Linear tabling is also the most space-efficient scheme
since no extra space is needed to save states of consumers. Nevertheless, linear
tabling without optimization could be computationally more expensive than the
other two schemes.

Guo and Gupta’s DRA method [Guo and Gupta 2001] is based on the same idea of
linear tabling but identifies looping clauses dynamically and iterates the execution
of looping clauses to compute fixpoints. While in our linear tabling iteration is
performed on only top-most looping subgoals, in DRA iteration is performed on
every looping subgoal. Besides the difference in answer consumption strategies and
optimizations, the linear tabling scheme described in this paper differs from the
original version [Zhou et al. 2000; Shen et al. 2001] in that followers fail after they
exhaust their answers rather than steal their pioneers’ choice points. This strategy
is originally adopted in the DRA method.

The two consumption strategies have been compared in XSB [Freire et al. 1998] as
two scheduling strategies. The lazy strategy is called local scheduling and the eager
strategy is called single-stack scheduling. Another strategy, called batched schedul-

Linear Tabling Strategies and Optimizations,

Linear Tabling Strategies and Optimizations · 21

ing, is similar to local scheduling but top-most looping subgoals do not have to wait
until their clusters become complete to return answers. Their experimental results
indicate that local scheduling constantly outperforms the other two strategies on
stack space and can perform asymptotically better than the other two strategies on
speed. The superior performance of local scheduling is attributed to the saving of
freezing stack segments. Although our experiment confirms the good space perfor-
mance of the lazy strategy, it gives a counterintuitive result that the eager strategy
is as fast as the lazy strategy. This result implies that the cost of iterative evalua-
tion is considerably smaller than that of freezing stack segments, and for predicates
with cuts the eager strategy can be used without significant slow-down. In our
tabling system, different answer consumption strategies can be used for different
predicates. The tabling system described in [Rocha et al. 2003] also supports mixed
strategies.

semi-naive optimization is a fundamental idea for reducing redundancy in bottom-
up evaluation of logic database queries [Bancilhon and Ramakrishnan 1986; Ullman
1988]. As far as we know, its impact on top-down evaluation had been unknown
before [Zhou et al. 2004]. OLDT [Tamaki and Sato 1986] as implemented in SLG-
WAM [Sagonas and Swift 1998] does not need this technique since it is not iterative
and the underlying delaying mechanism successfully avoids the repetition of any
derivation step. An attempt has been made by Guo and Gupta [Guo and Gupta
2001] to make incremental consumption of tabled answers possible in DRA. In
their scheme, answers are also divided into three regions but answers are consumed
incrementally as in bottom-up evaluation. Since no condition is given for the com-
pleteness and no experimental result is reported on the impact of the technique, we
are unable to give a detailed comparison.

Our semi-naive optimization differs from the bottom-up version in two major
aspects: Firstly, no differentiated rules are used. In the bottom-up version differ-
entiated rules are used to ensure that at least one new answer is involved in the
join of answers for each rule. Consider, for example, the clause:

H : −P, Q.

The following two differentiated rules are used in the evaluation instead of the
original one:

H : −∆P, Q.

H : −P, ∆Q.

Where ∆P denotes the new answers produced in the previous round for P. Us-
ing differentiated rules in top-down evaluation can cause considerable redundancy,
especially when the body of a clause contains non-tabled subgoals.

The second major difference between our semi-naive optimization and the bottom-
up version is that answers in our method are consumed sequentially not incremen-
tally. A tabled subgoal consumes either all available answers or only new answers
including answers produced in the current round. Neither incremental consumption
nor sequential consumption seems satisfactory. Incremental consumption avoids
redundant joins but may require more rounds to reach fixpoints. In contrast, se-
quential consumption never need more rounds to reach fixpoints but may cause
redundant joins of answers. The early promotion technique alleviates the problem

Linear Tabling Strategies and Optimizations,

22 · N-F. Zhou, T. Sato, and Y-D. Shen

of sequential consumption. By promoting answers early from the current region to
the previous region, we can considerably reduce the redundancy in joins.

In theory semi-naive optimization can be an order of magnitude faster than
naive-evaluation in bottom-up evaluation [Bancilhon and Ramakrishnan 1986]. Our
experimental results show that semi-naive optimization gives an average speed-up
of 40% to linear tabling if answers are promoted early, and almost no gain in speed
if no answer is promoted early. In linear tabling, only looping subgoals need to
be iteratively evaluated. For non-looping subgoals, no re-evaluation is necessary
and thus semi-naive optimization has no effect at all on the performance. Our
experiment shows that for most looping subgoals the fixpoints can be reached in
2-3 rounds of iteration. In contrast more rounds of iteration are needed to reach
fixpoints in bottom-up evaluation. In addition, in bottom-up evaluation, the order
of the joins can be optimized and no further joins are necessary once a participating
set is known to be empty. In contrast, in linear tabling joins are done in the strictly
chronological order. For a conjunction (P, Q, R) the join P 1 Q is computed even
if no answer is available for R. Because of all these factors, semi-naive optimization
is not as effective in linear tabling as in bottom-up evaluation.

Our semi-naive optimization requires the identification of last depending sub-
goals. For this purpose, a level mapping is used to represent the call graph of
a given program. The use of a level mapping to identify optimizable subgoals is
analogous to the idea used in the stratification-based methods for evaluating logic
programs [Apt et al. 1988; Chen and Warren 1996; Przymusinski 1989]. In our level
mapping, only predicate symbols are considered. It is expected that more accurate
approximations can be achieved if arguments are considered as well.

8. CONCLUSION

In this paper we have described the linear tabling framework, two answer consump-
tion strategies (namely, lazy and eager strategies), and the semi-naive optimization.
We have compared the two strategies both qualitatively and quantitatively. Our
results indicate that, while the lazy strategy has better space efficiency than the
eager strategy, the eager strategy is comparable in speed with the lazy strategy.
This result implies that for all-solution search programs the lazy strategy should
be adopted and for partial-solution search programs including programs with cuts
the eager strategy should be used.

We have tailored semi-naive optimization to linear tabling and have given the
necessary conditions for it to be complete. Moreover, we have proposed a technique
called early answer promotion to reduce redundant consumption of answers. Our
experimental result indicates that semi-naive optimization gives significant speed-
ups to some programs.

Linear tabling has several attractive advantages including its simplicity, ease of
implementation, and good space efficiency. Early implementations of linear were
several times slower than XSB. This paper has demonstrated for the first time that
linear tabling with optimization is as competitive as OLDT on time efficiency as
well.

Tabling has been found useful in a number of problem domains and it is ex-
pected that more and more Prolog systems will support tabling in the future. The

Linear Tabling Strategies and Optimizations,

Linear Tabling Strategies and Optimizations · 23

encouraging results of this paper will undoubtedly attract more attention to linear
tabling.

REFERENCES

Apt, K., Blair, H. A., and Walker, A. 1988. Towards a theory of declarative knowledge. In
Foundations of deductive databases and logic programming, J. Minker, Ed. Morgan Kaufmann,
89–142.

Bancilhon, F. and Ramakrishnan, R. 1986. An amateur’s introduction to recursive query
processing strategies. Proc. of ACM SIGMOD ’86 , 16–52.

Chen, W. and Warren, D. S. 1996. Tabled evaluation with delaying for general logic programs.
Journal of the ACM 43, 1, 20–74.

Dawson, S., Ramakrishnan, C. R., and Warren, W. 1996. Practical program analysis using
general purpose logic programming systems — A case study. ACM SIGPLAN Notices 31, 5,
117–126.

Demoen, B. and Sagonas, K. 1998. CAT: The copying approach to tabling. In Proceedings
of Programming Language Implementation and Logic Programming (PLILP). LNCS 1490,
Springer-Verlag, 21–35.

Demoen, B. and Sagonas, K. 1999. CHAT: The copy-hybrid approach to tabling. In Proceedings
of Practical Aspects of Declarative Programming (PADL). LNCS 1551, Springer-Verlag, 106–
121.

Eisner, J., Goldlust, E., and Smith, N. A. 2004. Dyna: A declarative language for implementing
dynamic programs. In Proc. of the 42nd Annual Meeting of ACL.

Freire, J., Swift, T., and Warren, D. S. 1998. Beyond depth-first: Improving tabled logic
programs through alternative scheduling strategies. Journal of Functional and Logic Program-
ming .

Guo, H.-F. and Gupta, G. 2001. A simple scheme for implementing tabled logic programming
systems based on dynamic reordering of alternatives. In Proceedings International Conference
on Logic Programming (ICLP). LNCS 2237, Springer-Verlag, 181–195.

Johnson, M. 1995. Memoization of top down parsing. Computational Linguistics 21, 3.

Liu, M. 1999. Deductive database languages: Problems and solutions. ACM Computing Sur-
veys 31, 1, 27–62.

Lloyd, J. W. 1988. Foundation of Logic Programming , 2 ed. Springer-Verlag.

Michie, D. 1968. “memo” functions and machine learning. Nature, 19–22.

Nielson, F., Nielson, H. R., Sun, H., Buchholtz, M., Hansen, R. R., Pilegaard, H., and

Seidl, H. 2004. The succinct solver suite. In Proc. Tools and Algorithms for the Construction
and Analysis of Systems: 10th International Conference (TACAS), LNCS 2988. 251–265.

Pientka, B. December 2003. Tabled higher-order logic programming. Ph.D. thesis, Technical
Report CMU-CS-03-185.

Przymusinski, T. C. 1989. Every logic program has a natural stratification and an iterated least
fixed point model. In PODS ’89. Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems. ACM Press, 11–21.

Ramakrishnan, C. 2002. Model checking with tabled logic programming. In ALP News Letter.

ALP.

Ramakrishnan, I., Rao, P., Sagonas, K., Swift, T., and Warren, D. 1998. Efficient access
mechanisms for tabled logic programs. J. Logic Programming 38, 31–54.

Ramakrishnan, R. and Ullman, J. D. 1995. A survey of deductive database systems. Journal
of Logic Programming 23, 2, 125–149.

Rocha, R., Silva, F., and Costa, V. S. 2003. A tabling engine designed to support mixed-
strategy evaluation. In Colloquium on Implementation of Constraint and LOgic Programming
Systems (CICLOPS). 33–44.

Rocha, R., Silva, F., and Costa, V. S. 2005. On applying or-parallelism and tabling to logic
programs. Theory and Practice of Logic Programming (TPLP) 5, 1 & 2, 161–205.

Linear Tabling Strategies and Optimizations,

24 · N-F. Zhou, T. Sato, and Y-D. Shen

Sagonas, K. and Swift, T. 1998. An abstract machine for tabled execution of fixed-order

stratified logic programs. ACM Transactions on Programming Languages and Systems 20, 3,
586–634.

Sagonas, K., Swift, T., and Warren, W. 1994. XSB as a deductive database. SIGMOD Record
(ACM Special Interest Group on Management of Data) 23, 2, 512–512.

Sato, T. and Kameya, Y. 2001. Parameter learning of logic programs for symbolic-statistical
modeling. Journal of Artificial Intelligence Research, 391–454.

Shen, Y.-D., Yuan, L., You, J., and Zhou, N.-F. 2001. Linear tabulated resolution based on
Prolog control strategy. Theory and Practice of Logic Programming (TPLP) 1, 1, 71–103.

Shen, Y.-D., Yuan, L.-Y., You, J.-H., and Zhou, N.-F. 1999. Linear tabulated resolutions for the
well-founded semantics. In Proceedings of Logic Programming and Nonmonotonic Reasoning.
192–205.

Tamaki, H. and Sato, T. 1986. OLD resolution with tabulation. In Proceedings of the Third
International Conference on Logic Programming, E. Shapiro, Ed. LNCS, Springer-Verlag, 84–
98.

Ullman, J. D. 1988. Database and Knowledge-Base Systems. Vol. 1 & 2. Computer Science
Press.

Uratani, N., Takezawa, T., Matsuo, H., and Morita, C. 1994. ATR integrated speech and
language database. Technical Report TR-IT-0056, ATR Interpreting Telecommunications Re-
search Laboratories. In Japanese.

Warren, D. S. 1992. Memoing for logic programs. Comm. of the ACM, Special Section on Logic
Programming 35, 3, 93.

Warren, D. S. 1999. Programming in Tabled Prolog. DRAFT 1 (http://www.cs.sunysb.edu/ war-
ren/xsbbook/book.html).

Zhou, N.-F. 1996. Parameter passing and control stack management in Prolog implementation
revisited. ACM Transactions on Programming Languages and Systems 18, 6, 752–779.

Zhou, N.-F. and Sato, T. 2003. Efficient fixpoint computation in linear tabling. In Fifth ACM-
SIGPLAN International Conference on Principles and Practice of Declarative Programming.
275–283.

Zhou, N.-F., Sato, T., and Hasida, K. 2003. Toward a high-performance system for symbolic
and statistical modeling. In IJCAI Workshop on Learning Statistical Models from Relational
Data. 153–159.

Zhou, N.-F., Shen, Y.-D., and Sato, T. 2004. Semi-naive evaluation in linear tabling. In Fifth
ACM-SIGPLAN International Conference on Principles and Practice of Declarative Program-
ming. 90–97.

Zhou, N.-F., Shen, Y.-D., Yuan, L.-Y., and You, J.-H. 2000. Implementation of a linear tabling

mechanism. In Proceedings of Practical Aspects of Declarative Programming (PADL). LNCS
1753, Springer-Verlag, 109–123.

Linear Tabling Strategies and Optimizations,

