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Abstract—This paper presents a common interface for Prolog
to three different types of discrete solvers including Constraint
Programming (CP), Integer Programming (IP), and SAT solvers.
The interface comprises primitives for creating decision variables,
specifying constraints, and invoking a solver, possibly with an ob-
jective function to be optimized. Before a solver is actually called,
the accumulated variables and constraints are transformedinto
a form acceptable to the solver. For a SAT solver, in particular,
variables are Booleanized and constraints are compiled into CNF.
Implemented in B-Prolog, the interface allows the programmer
to use the features of the host language such as recursion, pattern
matching, arrays, and loops to describe problems. The interface
provides an easy and uniform platform for exploring different
solvers and models. This paper compares the performance of the
CLP(FD) of B-Prolog, the CPLEX IP solver, and the Lingeling
SAT solver on several problems through the same interface
and for each problem it compares a model that uses Boolean
variables and another model that uses general integer variables.
Our experience tells that it is effortless to switch from onesolver
to another.
Keywords: Combinatorial search problems, Constraint program-
ming, Integer programming, SAT solvers, Prolog.

I. I NTRODUCTION

Many real-world problems, ranging from scheduling in
industrial production lines, planning for intelligent robots, pro-
tein structure predication, resource allocation, cryptography,
to various network optimization problems are combinatorial
search problems that can be represented in terms of decision
variables and constraints. There are three paradigms of sys-
tematic solvers for tackling these problems, namely, Constraint
Programming (CP), Integer Programming (IP), and SAT solv-
ing. CP uses constraint propagation to prune search spaces and
heuristics to guide search [22]; IP relies on LP relaxation and
branch-and-cut to find optimal integer solutions [2]; and SAT
solvers perform unit propagation and clause learning to prune
search spaces, and employ heuristics and learned clauses todo
non-chronological backtracking [18]. Past experiences tell us
that finding an efficient solution normally requires extensive
experimentation.

Many modeling languages have been developed for the
solvers. For example, AMPL [1] and GAMS [9] are for
mathematical programming (MP), Minizinc [20] is for CP, and
ASP [5] can be considered as a modeling language for SAT
and dynamic programming. Some ASP systems also provide
constructs for describing constraints in a similar way as inCP.

For example, Clasp [11] integrates ASP with Gecode[12] and
EZASP [4] integrates ASP with B-Prolog. The OPL [14] is a
modeling language for both CP and MP. Interfaces to solvers
have also been added to Prolog. For example, the Eplex library
[23] provides an interface for linking the ECLiPSe Prolog
system with Mathematical Programming (MP), and the BEE
compiler [19] for Prolog allows for efficiently checking the
satisfibility of constraints with a SAT solver.

This paper presents a common interface for Prolog to
three different types of discrete solvers. The interface com-
prises primitives for creating decision variables, specify-
ing constraints, and invoking a solver, possibly with an
objective function to be optimized. The supported con-
straints include Boolean, arithmetic, and the global constraints
alldifferent andelement. For a program, we can have
it call a different solver just by changing the invoking call.
Therefore, the interface greatly facilitates experimentation with
different solvers and models. The interface is implementedin
B-Prolog, which already has the language features for mod-
eling such as recursion, pattern matching, declarative loops,
and list builders. The interface makes B-Prolog a powerful
modeling language for the solvers.

The implementation of the interface makes use of attributed
variables in B-Prolog to accumulate constraints. When a
constraint is posted, it is added to the list of accumulated
constraints. Only when a solver-invoking call is executed are
the constraints interpreted. If the solver is CP, the accumulated
constraints are added into B-Prolog’s constraint store anda
labeling predicate is called to start the search. If the solver is
SAT, all the variables are Booleanized and all the constraints
are sent to the SAT solver after being compiled into CNF. If
the solver is IP, all the constraints are converted to disequalities
and sent to the IP solver. An answer found by the solver is
returned to B-Prolog as bindings of the decision variables.

We have experimented through the interface with several
solvers including the CLP(FD) solver of B-Prolog, the GLPK
and CPLEX LP/MIP solvers, and the Lingeling SAT solver. In
this paper, we compare the performance of the solvers on the
graph coloring, N-queens, and the numberlink problems. For
each problem, we consider two models, one using Boolean
variables and the other using general integer variables. Our
experiment results indicate that no solver is superior all the
time: SAT is the best for Boolean models and CP tends to



be better than SAT and IP for models that use general integer
variables. Our experience tells that it is effortless to switch
from one solver to another.

The remainder of the paper is structured as follows. The next
section gives a brief introduction to the non-standard features
provided by B-Prolog for modeling. Section III defines the
primitives in the interface. Section IV gives several examples.
Section V shows the implementation of the interface, mainly
on how different constraints are compiled. Section VI presents
the experimental results of different solvers on the example
programs. Section VII concludes the paper.

II. B-PROLOG

B-Prolog is an implementation of the standard Prolog
language with several useful new features including tabling,
constraint solving, and language constructs for modeling.The
reader is referred to [28] for a survey of the system. This
section introduces two non-standard features that are useful
for modeling: arrays and loops.

A. Arrays and the array subscript notation

A structure can be used as a one-dimensional array, and
a multi-dimensional array can be represented as a structure
of structures. To facilitate creating arrays, B-Prolog provides
a built-in, callednew_array(X,Dims), where X must
be a free variable andDims a list of positive integers that
specifies the dimensions of the array. For example, the call
new_array(X,[10,20]) binds X to a two dimensional
array whose first dimension has 10 elements and second di-
mension has 20 elements. All the array elements are initialized
to be free variables.

The built-in predicatearg/3 can be used to access array
elements, but it requires a temporary variable to store the
result, and a chain of calls to access an element of a multi-
dimensional array. To facilitate accessing array elements, B-
Prolog supports the array subscript notationX[I1,...,In],
whereX is a structure and eachIi is an integer expression.
This notation is interpreted as an array access when it occurs
in an arithmetic expression, an arithmetic constraint, or as an
argument of a call to the built-in@=/2.

The array subscript notation can also be used to access
elements of lists. For example, thenth/3 predicate can be
defined as follows:

nth(I,L,E) :- E @= L[I].

Note that, for the array access notationA[I], while it takes
constant time to access theIth element ifA is a structure, it
takes O(I) time whenA is a list.

B. Loops withforeach and list builders

B-Prolog provides a construct, calledforeach, for iterat-
ing over collections, and list builders for constructing lists.

Theforeach call has a very simple syntax and semantics.
For example,

foreach(A in [a,b], I in 1..2, write((A,I))

outputs four tuples:(a,1), (a,2), (b,1), and(b,2). The
baseforeach call has the form:

foreach(E1 in D1,. . .,En in Dn,LocalV ars,Goal)

whereEi in Di is called aniterator (Ei is called thepattern
andDi thecollectionof the iterator),Goal is a callable term,
andLocalV ars (optional) specifies a list of variables inGoal

that are local to each iteration. The pattern of an iterator is
normally a variable but it can be any term; the collection is a
list of terms or a range expression.

A list builder takes the form:

[T : E1 in D1, . . ., En in Dn, LocalV ars, Goal]

whereLocalV ars (optional) specifies a list of local variables,
Goal (optional) is a callable term. This construct means that
for each permutation of valuesE1 ∈ D1, . . ., En ∈ Dn, if the
instance ofGoal with renamed local variables is true, thenT
is added into the list. For example,

L @= [(A,I) : A in [a,b], I in 1..2]

bindsL to [(a,1),(a,2),(b,1),(b,2)]. A list of this
form is interpreted as a list builder if it occurs as an argument
of a call to the built-in@=/2 or in arithmetic constraints.
List builders are not allowed in arithmetic contexts of Prolog
since the arithmetic predicates such asis/2 and=:=/2 are
inline built-ins, but a list builder is compiled into a call to
a tail-recursive predicate and are hence not inline. For this
reason, a call likeX is sum([I : I in 1..100])
is not allowed. We have to write it as
L @= [I : I in 1..100], X is sum(L).

Calls toforeach and list builders are translated into tail-
recursive predicates. Therefore, there is no penalty to using
these loop constructs compared with using recursion.

III. T HE INTERFACE TOSOLVERS

The interface comprises primitives for creating decision
variables, specifying constraints, and invoking a solver,possi-
bly with an objective function to minimize or maximize. Note
that each of the new operators in the interface has a counterpart
in the CLP(FD) language. For example, the operator used for
equality constraints is$= in the interface and its counterpart
in CLP(FD) is#=.

A. Variable creation

A decision variable is a logic variable with a domain. In this
paper, we only consider discrete solvers and integer domains.
The Boolean domain is treated as a special integer domain
where 1 denotestrue and 0 denotesfalse. The primitive
X :: D declares that the domain of the variableX is D where
D can be a list of integers or a range expression in the form
l..u which denotes the set of integers{l, l + 1, . . . , u}. For
example, the callX :: [0,1] declares thatX is a Boolean
variable and the callY :: 1..4 declares thatY’s domain
is [1,2,3,4]. Multiple variables with the same domain can
be declared with one call. For example, the call[X,Y] ::
0..1 declares that bothX andY are Boolean variables.



B. Constraints

There are three types of constraints: Boolean, arithmetic,
and global.

A basic Boolean expression is made from constants (0
and 1), Boolean variables, and the following operators:$/\
(and), $\/ (or), $\ (not or xor), $<=> (equivalent), and
$=> (implication). The operator$\ is used for two different
purposes:$\ X means the negation ofX, and X $\ Y
means the exclusive or ofX andY.

An arithmetic constraint takes the form ofE1 R E2 where
E1 and E2 are two arithmetic expressions andR is one of
the following constraint symbols$= (equal),$\= (not equal),
$>=, $>, $=<, and $<. An arithmetic expression is made
of integers, domain variables, and the following arithmetic
functions: + (sign or addition),- (sign or subtraction),*
(multiplication),div (division),mod (remainder),abs, min,
max, andsum. In addition to the basic standard syntax for
expressions, the following forms of extended expressions are
also acceptable. LetC be a Boolean expression,E1 andE2 be
expressions, andL be a list of expressions[E1,E2,. . .,En].
The following are valid expressions as well:

• if(C,E1, E2) The same asC ∗ E1 + (1 − C) ∗ E2.
• min(L) The minimum element ofL, whereL can be a

list builder.
• max(L) The maximum element ofL, whereL can be a

list builder.
• min(E1, E2) The minimum ofE1 andE2.
• max(E1, E2) The maximum ofE1 andE2.
• sum(L) The sum of the elements ofL, whereL can be

a list builder.

An extended Boolean expression can also include arith-
metic constraints as operands. In particular, the constraint
B $<=> (E1 $= E2) is called a reification constraint
which uses a Boolean variableB to indicate the satisfiablity
of the arithmetic constraintE1 $= E2.

Only two global constraints, namely,$alldifferent(L)
and$element(I, L, V ), are currently supported.

C. Solver Invocation

The following primitives are provided to invoke a solver to
find a valuation of the list of variablesL that satisfies all the
constraints:1

• cp_solve(Options, L) Invoke the CP solver.
• ip_solve(Options, L) Invoke the IP solver.
• sat_solve(Options, L) Invoke the SAT solver.

whereOptions is a list of options for the solver (e.g.,min(E)
and max(E) for optimization, anddump for dumping the
model in some format). The reader is referred to the manual
for the details of the primitives.

IV. EXAMPLES

We present in this section several modeling examples that
use the interface. In all the examples, we usesat_solve to

1The primitivelp_solve(Options,L) is provided to invoke the LP/MIP
solver.

color(NV,NC):-
new_array(A,[NV]),
term_variables(A,Vars),
Vars :: 1..NC,
foreach(I in 1..NV-1, J in I+1..NV,

((edge(I,J);edge(J,I)) ->
A[I] $\= A[J]

;
true

)
),
sat_solve(Vars),
writeln(Vars).

Fig. 1. Color a graph using one variable per node.

call the SAT solver. It can be replaced byip_solve to call
the IP solver, andcp_solve to call the CP solver. In section
VI, we will use these examples to compare the three types of
solvers.

A. Graph coloring

Given an undirected graphG = (V,E) whereV is a set of
vertices andE is a set of edges, and a set of colors, the graph
coloring problem is to assign a color to each node inV so
that no two adjacent vertices share the same color.

One model is to use one variable for each node whose value
is the color assigned to the node. The program in Figure 1
encodes this model. The predicatecolor(NV,NC) colors a
graph withNV vertices andNC colors. It is assumed that the
vertices are numbered from 1 toNV, the colors are numbered
from 1 to NC, and the edges are given as a predicate named
edge/2,

The call new_array(A,[NV]) creates an array ofNV
variables. The callterm_variables(A,Vars) is a built-
in which bindsVars to the list of variables occurring in
A. The call Vars :: 1..NC restricts the domains of the
variables to1..NC. The foreach loop posts constraints:
for each pair of vertices(I,J), if it is connected by an edge,
then the color assigned toI (i.e.,A[I]) is different from the
color assigned toJ (i.e., A[J]).

Another model is to useNC Boolean variables for
each node, each variable corresponding to a color. The
program in Figure 2 is based on this model. The call
new_array(A,[NV,NC]) creates a two dimensional array
of size NV×NC. The callVars :: [0,1] make the vari-
ables Boolean. The firstforeach loop ensures that for each
node only one of its Boolean variables can take value 1. The
nextforeach loop ensures that no two adjacent vertices can
have the same color. The formula

$\ A[I,K] $\/ $\ A[J,K]

ensures that the colorK cannot be assigned to both nodeI
and nodeJ.



bcolor(NV,NC):-
new_array(A,[NV,NC]),
term_variables(A,Vars),
Vars :: [0,1],
foreach(I in 1..NV,

sum([A[I,K] : K in 1..NC]) $= 1
),
foreach(I in 1..NV-1, J in I+1..NV,

((edge(I,J);edge(J,I)) ->
foreach(K in 1..NC,

$\ A[I,K] $\/ $\ A[J,K]
)

;
true

)
),
sat_solve(Vars),
writeln(A).

Fig. 2. Color a graph using Boolean variables.

queens(N):-
length(Qs,N),
Qs :: 1..N,
foreach(I in 1..N-1, J in I+1..N,

(Qs[I] $\= Qs[J],
abs(Qs[I]-Qs[J]) $\= J-I)

),
sat_solve(Qs),
writeln(Qs).

Fig. 3. A program for the N-queens problem.

B. N-queens problem

The N-queens problem is given as follows: Find a layout
for N queen pieces on an N by N chessboard so that no
queens attack each other. Two queens attack each other if
they are placed in the same row, the same column, or the
same diagonal.

For the N-queens problem, several models are possible.
Since there are N queens and N rows, each column must
have exactly one queen. One model is to use a variable for
each column whose value indicates the number of row for the
queen in this column. Figure 3 gives the program based on
this model.

The call length(Qs,N) creates a listQs of N vari-
ables. The callQs :: 1..N restricts the domains of the
variables to1..N. The foreach loop posts constraints
to ensure that for each two columnsI and J (J > I)
the two queens in the two columns are not in the same
row (Qs[I] $\= Qs[J]) and not in the same diagonal
(abs(Qs[I]-Qs[J]) $\= J-I).

Another possible model is to use a Boolean variable for
each square on the board, 1 indicating a queen and 0 indicating
empty. Figure 4 shows a program based on this model. The

bqueens(N):-
new_array(Qs,[N,N]),
term_variables(Qs,Vars),
Vars :: 0..1,
foreach(I in 1..N, % 1 in each row

sum([Qs[I,J] : J in 1..N]) $= 1
),
foreach(J in 1..N, % 1 in each column

sum([Qs[I,J] : I in 1..N]) $= 1
),
foreach(K in 1-N..N-1, % at most one

sum([Qs[I,J] :
I in 1..N, J in 1..N, I-J=:=K]

) $=< 1
),
foreach(K in 2..2*N, % at most one

sum([Qs[I,J] :
I in 1..N, J in 1..N, I+J=:=K]

) $=< 1
),
sat_solve(Vars),
writeln(Vars).

Fig. 4. A model using Boolean variables for N-queens.

constraint

foreach(K in 1-N..N-1,
sum([Qs[I,J] :

I in 1..N, J in 1..N, I-J=:=K]
) $=< 1

)

ensures that each diagonal that is parallel to the main diagonal
contains at most one queen, and the constraint

foreach(K in 2..2*N,
sum([Qs[I,J] :

I in 1..N, J in 1..N, I+J=:=K]
) $=< 1

)

ensures that each diagonal that is parallel to the minor diagonal
contains at most one queen.

C. The Numberlink problem

Numberlink is a logic puzzle made popular by Nikoli [21].
Figure 5 gives a solution to an example problem. Given a grid
board of a certain dimension with some cells preoccupied by
pairs of numbers, the puzzle is to find a path for each pair of
the same numbers such that no paths overlap or intersect with
each other. In Figure 5, the path for each pair of numbers is
shown as connected cells filled with the same numbers.

The problem can be generalized as a graph labeling problem
as follows: given an undirected graphG whose nodes are num-
bered from 1 toNV and a set ofNC connection requirements
each of which takes the formconnection(I, V1, V2) where
1 ≤ I ≤ NC, andV1 andV2 are nodes inG, the problem is



1 1 1 6 6 6 4 4 4 4
1 7 7 7 7 6 6 6 6 4
1 7 5 5 5 5 5 5 6 4
1 7 5 2 2 6 6 6 6 4
1 7 5 2 3 6 4 4 4 4
1 7 5 2 3 6 6 6 6 6
1 7 5 2 3 3 3 3 3 3
1 7 5 2 2 2 2 2 2 3
1 7 5 1 1 1 1 1 2 3
1 1 1 1 3 3 3 3 3 3

Fig. 5. A solution to an example numberlink problem.

to label the nodes with numbers from 1 toNC such that for
each connection requirementconnection(I, V1, V2) there is
a path of nodes all labeled withI between the terminal nodes
V1 andV2. We assume that the edges of the graph are given
as a predicateedge/2 and we also assume that the predicate
neighbors(V,Neibs) is available which states that the set
of nodes that are directly connected toV is Neibs.

The first model is to use a domain variable for each node
whose value indicates the label assigned to the node. Figure
6 shows the encoding of this model. The loop

foreach(C in 1..NC, [V1,V2],
(connection(C,V1,V2),
Arr[V1] @= C,Arr[V2]@=C))

initializes the pre-occupied nodes. For each connection
requirementconnection(C,V1,V2), the label of V1
(Arr[V1]) and the label ofV2 (Arr[V2]) are initialized
to C.

The predicateconstrain_node(Arr,V) ensures that
the label assigned to the nodeV meets the requirement. IfV
is a terminal node in a connection requirement, then only one
neighbor can receive the same label asV; otherwise, there are
two neighbors with the same label asV.

Another model is to use a Boolean variable for each pair of
connections and nodes. For a pair of a connection and a node,
the node belongs to the connection if and only if the value
of the Boolean variable for the pair is 1. Figure 7 shows the
encoding of this model. The constraint

sum([Arr[C,Neib] : Neib in Neibs]) $=1

ensures that there is exactly one neighbor that belongs to the
connectionC and the constraint

Arr[C,V] $=>
sum([Arr[C,Neib] : Neib in Neibs]) $= 2

ensure that ifV belongs to the connectionC then there are
exactly two neighbors that belong to the connection.

V. I MPLEMENTATION

The implementation of the interface utilizes domain vari-
ables in B-Prolog. The primitiveX :: D already exists in
B-Prolog for creating finite domain variables. WhenD is

numberlink(NV,NC):-
new_array(Arr, [NV]),
term_variables(Arr, Vars),
Vars::1..NC,
foreach(C in 1..NC, [V1,V2],

(connection(C,V1,V2),
Arr[V1] @= C,
Arr[V2]@=C)),

foreach(V in 1..NV,constrain_node(Arr,V)),
sat_solve(Vars),
writeln(Vars).

constrain_node(Arr,V1):-
neighbors(V1,Neibs),
((connection(C,V1,_);

connection(C,_,V1))->
sum([(Arr[V2]$=C) : V2 in Neibs]
) $=1

;
sum([(Arr[V1]$=Arr[V2]) :

V2 in Neibs]
) $=2

).

Fig. 6. A model for the numberlink problem.

an interval, the lower and upper bounds are attached to the
variableX as two attributes. WhenD is a set of integers with
holes, a bit vector is attached toX to represent the domain.
Each domain variable also has an attached attribute that tells
the list of constraints this variable is participating. When a
constraint is posted, this constraint is just added into thelists
of the participating variables. When a solver-invoking call is
executed, the attached constraints are transformed into the
form acceptable to the called solver. This section describes
how constraints are transformed. All the transformation rules
are well known. It’s hoped that these transformation rules will
help explain the experimental results to be presented in the
next section.

A. Transformation for the CP solver

The transformation of constraints for the CP solver
is straightforward. Each constraint is transformed to its
corresponding CLP(FD) constraint. For example,X $= Y
is transformed to X #= Y, and $alldifferent(L)
is transformed to alldistinct(L). The primitive
cp_solve(Options,L) is transformed to
labeling(Options,L).

B. Transformation for the IP solver

For the IP solver, constraints are transformed into arithmetic
equality and disequality (≤ or ≥) constraints. It’s straightfor-
ward to transform Boolean constraints. The following table
gives the transformation rules for Boolean constraints where
X andY are Boolean variables.



numberlink(NV,NC):-
new_array(Arr, [NC,NV]),
term_variables(Arr, Vars),
Vars::0..1,
foreach(C in 1..NC, [V1,V2],

(connection(C,V1,V2),
Arr[C,V1] @= 1,
Arr[C,V2]@=1)),

foreach(V in 1..NV,
sum([Arr[C,V] : C in 1..NC]
) $=1

),
foreach(C in 1..NC, V in 1..NV,

constrain_cv(C,V,Arr)
),
sat_solve(Vars),
writeln(Vars).

constrain_cv(C,V1,Arr):-
neighbors(V1,Neibs),
((connection(C,V1,_);

connection(C,_,V1))->
sum([Arr[C,Neib] : Neib in Neibs]
) $= 1

;
Arr[C,V] $=>
sum([Arr[C,Neib] : Neib in Neibs])
$=2

).

Fig. 7. Another model for the numberlink problem.

Boolean Arithmetic
X $/\ Y X $= 1, Y $= 1
X $\/ Y X+Y $>= 1
X $=> Y X-Y $=< 0
X $<=> Y X $= Y
X $\ Y X+Y $= 1
$\ X X $= 0

Reification constraints are logical constraints and can
be transformed into IP formulations using the exist-
ing techniques [2]. For example, consider the constraint
B $<=> (X $=< Y) whereB is a Boolean variable, and
X and Y are two arbitrary integer domain variables. The
constraint can be transformed to:

X-Y-M1*(1-B) $=< 0,
Y-X+1-M2*B $=< 0

where M1 is ubd(X)-lbd(Y)+1 and M2 is
ubd(Y)-lbd(X)+2.2 WheneverB=0, the first constraint is
trivially satisfied andY-X+1 $=< 0, i.e., X $> Y, must
be satisfied. WheneverB=1, the second constraint is trivially
satisfied, andX-Y $=< 0 must be satisfied. The implication

2ubd(X) stands for the upper bound andlbd(X) the lower bound of the
domain ofX.

constraintB $=> (X $=< Y) only requires the constraint
(X $=< Y) to be satisfied wheneverB=1, so it can be
transformed toX-Y-M1*(1-B) $=< 0.

Inequality constraints (6=) are transformed to disequality
constraints by introducing Boolean variables. For example, the
constraintX $\= Y is transformed to:

B1 $=> (X $< Y),
B2 $=> (X $> Y),
B1+B2 $= 1

The last constraintB1+B2 $= 1 entails thatB1 and B2
cannot both be 0, i.e,X cannot be equal toY.

C. Transformation for the SAT solver

Several methods have been proposed for compiling CSPs
into SAT [8], [26], [10], [25], and several modeling languages
have been developed for SAT such as ASP [5], the Sugar
CSP [24], and BEE [19]. Our implementation supports di-
rect encoding [8], [26] and log-encoding [10], [13], [15],
[16]. For a 0-1 CSP, these two encoding methods generate
the same CNF code. For a variableX whose domain is
{a1, a2, . . . , am}, the direct encoding method usesm Boolean
variablesx1, x2, . . . , xm, wherexi = 1 meansX = ai. Direct
encoding generates clauses to ensure that exactly one of these
variables can be 1. For a constraint, this method generates
clauses to disallow conflict assignments. For example, for
the constraintX 6= Y (X,Y ∈ 1..2), four Boolean variables
(x1(X = 1), x2(X = 2), y1(Y = 1), y2(Y = 2)) are used
to encode the domains, and the two clauses¬x1 ∨ ¬y1 and
¬x2 ∨ ¬y2 are generated to disallow the conflict assignments
(X = 1, Y = 1) and (X = 2, Y = 2). In the log-
encoding method, the domain{a1, a2, . . . , am} is encoded
with dlog2(a)e Boolean variables, wherea is the maximum
absolute value of the domain values, and a Boolean variable for
the sign if the domain contains negative integers. Each of the
valuations of the Boolean variables represents a value in the
domain and clauses are generated to disallow combinations for
the values that are not in the domain. Equality and disequality
constraints are flattened to two types of primitive constraints
in the form of x > y and x + y = z, which are compiled
further to logic adders and comparators in CNF. For other
types of constraints, clauses are generated to disallow conflict
valuations of the variables.

It is time consuming to compile constraints that in-
volve a large number of variables. To speed up compi-
lation, our implementation enforces interval consistencyof
the constraints before compilation and exploits bounds in-
formation of domains to avoid enumerating all permuta-
tions of domain values to find conflicts. In particular, for
some constraints that involve only Boolean domain vari-
ables, it never enumerates all the permutations. For exam-
ple, if the constraint isB1+B2+...+Bn $> 0 whereBi’s
are all Boolean variables, it converts the constraint into
B1 $\/ B2 $\/ ... $\/ Bn without enumerating the
values.



TABLE I
CPUTIMES FORcolor.

Instance CLP(FD) Lingeling CPLEX
1-graph_125-0 0.70 10.15 >200
2-graph_125-0 >200 >200 >200
3-graph_125-0 0.05 2.90 >200
4-graph_125-0 4.17 >200 >200
5-graph_125-0 0.74 1.98 >200

The branch-and-boundmethod is used to optimize an
objective function. For the first run, the objective function is
disregarded and only constraints are sent to the solver. Once
an answer is returned, the objective function has a value.
For the subsequent run, a new constraint is added to force
the objective function to have a better value than the current
best answer. This step is repeated until the set of constraints
become unsatisfiable. At that point, the current best answeris
the final best answer.

VI. EXPERIMENTAL RESULTS

The interface has been implemented in B-Prolog and is
available with version 7.8 [3]. We have compared three solvers
including CLP(FD) of B-Prolog, the LP/MIP solver CPLEX
[7], and the SAT solver Lingeling [17] on the three problems
given in Section IV. Each of these solvers represents the state
of the art in it’s category. For this comparison, direct encoding
was used by the SAT compiler. In general, log-encoding is
more efficient that direct-encoding. The BProlog+SAT solver
submitted to the MiniZinc Challenge 20123 employs log-
encoding. We did the comparison on a PC with 3GHz Xeon(R)
CPU 5160 and 160GB running CentOS Linux. All the CPU
times given in the tables are in seconds.

Table I shows the CPU times taken by the solvers to
run the color program on five instances from the third
ASP solver competition [6]. All the instance graphs have
125 nodes. Clearly, CPLEX is not suited for this model. For
each disequality constraint, the translated model contains two
new Boolean variables. CLP(FD) failed to solve one instance
within the 200-second limit and SAT failed two. Note that
the CLP(FD) encoding of the problem that exploits symmetry
breaking and global constraints solves all the instances easily
[29].

Table II shows the CPU times for thebcolor program
that uses Boolean variables. For this program, SAT performed
better than CLP(FD), mainly because the first-fail labeling
strategy of CLP(FD) becomes ineffective for Boolean vari-
ables. Again, CPLEX is not suited for this model.

Table III shows the CPU times for thequeens program
on five instances (N is the number of queens). CLP(FD) is
a clear winner for this program. We have to mention that a
large portion of the time taken by SAT is spent on compiling
constraints into CNF. For example, for N=100, that portion
accounts for 50% of the time.

3http://www.g12.csse.unimelb.edu.au/minizinc/challenge2012/challenge.html

TABLE II
CPUTIMES FORbcolor.

Instance CLP(FD) Lingeling CPLEX
1-graph_125-0 >200 53.04 >200
2-graph_125-0 >200 >200 >200
3-graph_125-0 >200 0.86 >200
4-graph_125-0 >200 >200 >200
5-graph_125-0 >200 0.61 191.11

TABLE III
CPUTIMES FORqueens.

Instance CLP(FD) Lingeling CPLEX
10 0.00 0.02 0.18
20 0.00 0.99 47.71
30 0.00 7.97 >200
50 0.01 21.10 >200
100 0.02 34.02 >200

Table IV shows the CPU times for thebqueens program
that uses Boolean variables. CPLEX is a clear winner, which
is followed closely by Lingeling. CLP(FD) is the slowest.

Table V shows the results for thenumberlink program on
five instances taken from the third ASP competition. Lingeling
is a clear winner: it solved all the instances while CLP(FD)
and CPLEX each failed to solve the last instance.

Table VI shows the results for thebnumberlink program.
Again, Lingeling is a clear winner. This model works so well
with Lingeling that it solved all the 60 instances submittedto
the third ASP competition including a very hard instance [27].

Overall, no solver is superior all the time. CLP(FD) won
the non-Boolean models for the graph coloring and N-queens
problems; CPLEX outperformed Lingeling by a small mar-
gin on the Boolean model of the N-queens problems; and
Linegeling won the rest three models. Our results also confirm
that models that use Boolean variables are not suited for
CLP(FD). This is because, as mentioned above, the first-
fail labeling strategy is not effective for Boolean variables.
On the other hand, Lingeling works better on 0-1 integer
programming models than general integer models.

VII. F INAL REMARKS

This paper has presented a common Prolog interface to three
different types of discrete solvers including CP, IP, and SAT
solvers. With the interface and the new language constructs
such as arrays and loops, Prolog can serve as a powerful
modeling language for these solvers. CP, IP, and SAT solving
are three different paradigms for solving combinatorial search
problems. Each paradigm has its strengths and weaknesses:
CP tends to be well suited to problems for which global
constraints, symmetry breaking, and problem-specific propa-
gation and labeling can be exploited; IP tends to be well suited
to problems that can be naturally expressed with disequality
constraints; and SAT tends to be suited to problems that
are intrinsically Boolean. Our experimental results confirm to
some extent these observations.

In reality, it requires extensive experimentation to find a
right model and a right solver. The interface presented in this



TABLE IV
CPUTIMES FORbqueens.

Instance CLP(FD) Lingeling CPLEX
10 0.00 0.00 0.01
20 0.15 0.07 0.02
30 64.82 0.28 0.19
50 >200 1.21 0.08
100 >200 10.97 5.66

TABLE V
CPUTIMES FORnumberlink.

Instance CLP(FD) Lingeling CPLEX
2-numberlink-0-0.asp 0.00 0.00 0.01
9-numberlink-0-0.asp 0.01 0.05 0.08

111-numberlink-0-0.asp 0.01 0.15 0.16
120-numberlink-0-0.asp 0.01 0.22 0.13
48-numberlink-0-0.asp >200 6.42 >200

paper provides a common and easy platform for experiment-
ing with different solvers and models. Compared with other
hosting languages such as C++ and Java, Prolog allows for
natural encodings of constraints; and compared with other
modeling languages such as OPL, Prolog as a general-purpose
language allows for easy integration of constraint solvingas
a component into a large application.

With tabling for dynamic programming solutions and
CLP(FD) for CSPs, the newly added common interface with
SAT and LP/MIP certainly enriches the B-Prolog toolbox
for solving combinatorial search and optimization problems.
Nevertheless, unlike for ASP, the user of B-Prolog has to
choose which tool to use for a problem specification. An
interesting direction for further work is to develop a compiler
for ASP in B-Prolog that automatically chooses what tools to
use for a problem specification. Other further work includes
investigating different compilation methods for SAT solvers,
hybridization of solvers, and running multiple solvers in
parallel in a distributed environment.
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