A Comparison of CP, IP, and SAT Solvers Through
a Common Interface

Neng-Fa Zhou

Masato Tsuru

Eitaku Nobuyama

Brooklyn College & Graduate Center Faculty of Comp. Sci. & Sys. Eng. Faculty of Comp. Sci. & Sys. Eng.

The City University of New York
zhou@sci.brooklyn.cuny.edu

Abstract—This paper presents a common interface for Prolog
to three different types of discrete solvers including Consaint
Programming (CP), Integer Programming (IP), and SAT solves.
The interface comprises primitives for creating decision ariables,
specifying constraints, and invoking a solver, possibly vt an ob-
jective function to be optimized. Before a solver is actuajl called,
the accumulated variables and constraints are transformednto
a form acceptable to the solver. For a SAT solver, in particur,
variables are Booleanized and constraints are compiled iotCNF.
Implemented in B-Prolog, the interface allows the programner
to use the features of the host language such as recursion, tfan
matching, arrays, and loops to describe problems. The intdace
provides an easy and uniform platform for exploring different
solvers and models. This paper compares the performance ofi¢
CLP(FD) of B-Prolog, the CPLEX IP solver, and the Lingeling
SAT solver on several problems through the same interface

and for each problem it compares a model that uses Boolean

variables and another model that uses general integer varkdes.
Our experience tells that it is effortless to switch from onesolver
to another.

Keywords: Combinatorial search problems, Constraint progam-
ming, Integer programming, SAT solvers, Prolog.

I. INTRODUCTION

Kyushu Institute of Technology
tsuru@cse.kyutech.ac.jp

Kyushu Institute of Technology
nobuyama@ces.kyutech.ac.jp

For example, Clasp [11] integrates ASP with Gecode[12] and
EZASP [4] integrates ASP with B-Prolog. The OPL [14] is a
modeling language for both CP and MP. Interfaces to solvers
have also been added to Prolog. For example, the Eplexyibrar
[23] provides an interface for linking the ECRS Prolog
system with Mathematical Programming (MP), and the BEE
compiler [19] for Prolog allows for efficiently checking the
satisfibility of constraints with a SAT solver.

This paper presents a common interface for Prolog to
three different types of discrete solvers. The interfacs-co
prises primitives for creating decision variables, specif
ing constraints, and invoking a solver, possibly with an
objective function to be optimized. The supported con-
straints include Boolean, arithmetic, and the global cwiirsts
al I di fferent andel enent . For a program, we can have
it call a different solver just by changing the invoking call
Therefore, the interface greatly facilitates experimeotawith
different solvers and models. The interface is implemeined
B-Prolog, which already has the language features for mod-
eling such as recursion, pattern matching, declarativedpo
and list builders. The interface makes B-Prolog a powerful

Many real-world problems, ranging from scheduling imodeling language for the solvers.

industrial production lines, planning for intelligent mts, pro-

The implementation of the interface makes use of attributed

tein structure predication, resource allocation, cryppy, variables in B-Prolog to accumulate constraints. When a
to various network optimization problems are combinatorigonstraint is posted, it is added to the list of accumulated
search problems that can be represented in terms of decistonstraints. Only when a solver-invoking call is executesl a
variables and constraints. There are three paradigms ef syg constraints interpreted. If the solver is CP, the acdatad

tematic solvers for tackling these problems, namely, Gairdt

constraints are added into B-Prolog’s constraint store @and

Programming (CP), Integer Programming (IP), and SAT solabeling predicate is called to start the search. If the esois
ing. CP uses constraint propagation to prune search spades®AT, all the variables are Booleanized and all the condsain

heuristics to guide search [22]; IP relies on LP relaxatiod a are sent to the SAT solver after being compiled into CNF. If
branch-and-cut to find optimal integer solutions [2]; andTSAthe solver is IP, all the constraints are converted to digktips
solvers perform unit propagation and clause learning te@ruand sent to the IP solver. An answer found by the solver is
search spaces, and employ heuristics and learned claudes treturned to B-Prolog as bindings of the decision variables.
non-chronological backtracking [18]. Past experiencésute We have experimented through the interface with several
that finding an efficient solution normally requires exteasi solvers including the CLP(FD) solver of B-Prolog, the GLPK
experimentation. and CPLEX LP/MIP solvers, and the Lingeling SAT solver. In
Many modeling languages have been developed for ttiés paper, we compare the performance of the solvers on the
solvers. For example, AMPL [1] and GAMS [9] are forgraph coloring, N-queens, and the numberlink problems. For
mathematical programming (MP), Minizinc [20] is for CP, an@tach problem, we consider two models, one using Boolean
ASP [5] can be considered as a modeling language for SA@riables and the other using general integer variables. Ou
and dynamic programming. Some ASP systems also proviebgperiment results indicate that no solver is superior fal t
constructs for describing constraints in a similar way aS€ih time: SAT is the best for Boolean models and CP tends to

be better than SAT and IP for models that use general integertputs four tuplesta, 1) ,(a, 2),(b, 1),and(b, 2).The
variables. Our experience tells that it is effortless totslwi basef or each call has the form:
from one solver to another. . .

The remainder of the paper is structured as follows. The néx({r each(Ey in Dy, ... En in D, LocalVars, Goal)
section gives a brief introduction to the non-standarduiest whereE; i n D; is called ariterator (E; is called thepattern
provided by B-Prolog for modeling. Section Ill defines thand D, the collectionof the iterator),Goal is a callable term,
primitives in the interface. Section IV gives several exégap and LocalVars (optional) specifies a list of variables #oal
Section V shows the implementation of the interface, mainthat are local to each iteration. The pattern of an iteraor i
on how different constraints are compiled. Section VI prése normally a variable but it can be any term; the collection is a
the experimental results of different solvers on the examglst of terms or a range expression.
programs. Section VIl concludes the paper. A list builder takes the form:

Il B-PROLOG [T : Ei1in Dy, ..., E, in D,, LocalVars, Goal]

B-Prolog is an implementation of the standard ProloghereLocalVars (optional) specifies a list of local variables,

language with several useful new features including tablin oal (optional) is a callable term. This construct means that
constraint solving, and language constructs for modeliing for each permutat!on of valuds, € Dy, Ly, € Dy, if the
reader is referred to [28] for a survey of the system. Th!gstance ofGoal with renamed local variables is true, thén

section introduces two non-standard features that areulusdf @dded into the list. For example,
for modeling: arrays and loops. L@&I [(Al): AinJa/b], I in 1..2]

A. Arrays and the array subscript notation bindsLto[(a, 1), (a, 2), (b, 1), (b, 2)].Alist of this

A structure can be used as a one-dimensional array 6{ gm is interpreted as a list builder if it occurs as an argome

a multi-dimensional array can be represented as a structﬁ eabCEf‘l! fo the bu'lt"lT @/ d2' or |_nhar|tr_1met|c const;antsl.
of structures. To facilitate creating arrays, B-Prologyies 'St Pullders are not allowed in arithmetic contexts of e

a built-in, callednew_array(X, Dims), where X must since the arithmetic predicates suchiag 2 and=: =/ 2 are
be a free variable an@dims a list of positive integers that |nI|n(_a bunt—lr_\s, but a list builder is compiled 'T‘“.’ a cab t .
specifies the dimensions of the array. For example, the cgail-recursive predlcqte and are hence_not inline. Fa- thi
new array(X, [10, 20]) binds X to a two dimensional reason, a call likeX is sum([| | in 1 ‘ 10.0])
array whose first dimension has 10 elements and second 'gi- not allowed. We have to write it as

mension has 20 elements. All the array elements are izitidli L& I lin 1. 1_00] " X is sum(L).) i
to be free variables. Calls tof or each and list builders are translated into tail-

The built-in predicatear g/ 3 can be used to access arrarecursive predicates. Therefore, th_ere i$ no pena_lty togusi
elements, but it requires a temporary variable to store f gse loop constructs compared with using recursion.

result, and a chain of calls to access an element of a multi- IIl. THE INTERFACE TOSOLVERS
dimensional array. To facilitate accessing array elemeBis]) o . .
Prolog supports the array subscript notatip Iy, . . . , L] , The interface comprises primitives for creating decision

where X is a structure and each is an integer expression. Variables, specifying constraints, and invoking a solpessi-

This notation is interpreted as an array access when it sccPy With an objective function to minimize or maximize. Note
in an arithmetic expression, an arithmetic constraint,aa that each of the new operators in the interface has a cowanterp

in the CLP(FD) language. For example, the operator used for
gquality constraints i$= in the interface and its counterpart
in CLP(FD) is#=.

argument of a call to the built-i@-/ 2.
The array subscript notation can also be used to acc
elements of lists. For example, tm h/ 3 predicate can be

defined as follows: A. Variable creation

nth(l,L,E) :- E @ L[I]. A decision variable is a logic variable with a domain. In this
paper, we only consider discrete solvers and integer da@nain
The Boolean domain is treated as a special integer domain
where 1 denotesr ue and O denote$al se. The primitive

Note that, for the array access notatiépl], while it takes
constant time to access théh element ifA is a structure, it
takes O[) time whenA is a list.

X :: Ddeclares that the domain of the varialflés D where
B. Loops withf or each and list builders D can be a list of integers or a range expression in the form
: : I..u which denotes the set of integefs ! + 1,...,u}. For
B-Prolog provides a construct, callédr each, for iterat- e
gp example, the calK :: [0, 1] declares thaK is a Boolean

ing over collections, and list builders for constructinstdi . ;
9 X ngf variable and the cal¥ :: 1..4 declares thal'’'s domain

Thef or each call has a very simple syntax and semantics. : : :)
For example, iIs[1, 2,3, 4] . Multiple variables with the same domain can

be declared with one call. For example, the ¢aX, Y]
foreach(Ain [a,b], I in1..2, wite((A /1)) 0..1 declares that botX andY are Boolean variables.

col or (NV, NO) : -

. . _ new_ array(A [NV]),
There are three types of constraints: Boolean, arithmetic, orm vari abl es(A, Vars),

B. Constraints

and global. Vars :: 1..NG
A basic Boolean expression is made from constants (0 fgreach(l in 1..Nv-1, J in |+1..NV,
and 1), Boolean variables, and the following operat@vst ((edge(l,J);:edge(J, 1)) ->
(and), $\/ (or), $\ (not or xor), $<=> (equivalent), and AIT $\= ALJ]
$=> (implication). The operato$\ is used for two different
purposes:$\ X means the negation ok, and X $\ Y ' true
means the exclusive or of and.)
An arithmetic constraint takes the form &f R F5 where),
E; and E, are two arithmetic expressions arftlis one of sat_sol ve(Vars),
the following constraint symbol$= (equal),$\ = (not equal), writel n(Vars).
$>=, $>, $=<, and $<. An arithmetic expression is made
of integers, domain variables, and the following arithmeti Fig. 1. Color a graph using one variable per node.

functions: + (sign or addition),- (sign or subtraction)y

(multiplication),di v (division), nod (remainder)abs, ni n,

max, andsum In addition to the basic standard syntax fog,|| the SAT solver. It can be replaced bp_sol ve to call
expressions, the following forms of extended expressioas g, |p solver, andp_sol ve to call the CP solver. In section

also acceptable. L&t be a Boolean expressio; andE»> be v \ye will use these examples to compare the three types of
expressions, anfl be a list of expressior{st, Es, ..., En] . govers.

The following are valid expressions as well:
e i f(C,E1, Ey) The same a€’ « Fq + (1 — C) x Es.

e m n(L) The minimum element ok, whereL can be a A. Graph coloring

list builder. Given an undirected grapfl = (V, E) whereV is a set of

« max(L) The maximum element df, whereL can be a vertices andt is a set of edges, and a set of colors, the graph
list builder. coloring problem is to assign a color to each nodé/irso

e M n(Ey, E3) The minimum ofE; and Es. that no two adjacent vertices share the same color.

« max(E1, E2) The maximum ofE; and Es. One model is to use one variable for each node whose value

« sumL) The sum of the elements df, whereL can be s the color assigned to the node. The program in Figure 1
a list builder. encodes this model. The predicatel or (NV, NC) colors a

An extended Boolean expression can also include arithraph withNV vertices andNC colors. It is assumed that the
metic constraints as operands. In particular, the comstravertices are numbered from 1 MY/, the colors are numbered
B $<=> (E1 $= E2) is called a reification constraint from 1 to NC, and the edges are given as a predicate named
which uses a Boolean variab to indicate the satisfiablity edge/ 2,

of the arithmetic constrairEl $= E2. The callnew_array(A, [NV]) creates an array div
Only two global constraints, namelyal | di fferent (L) variables. The call er m vari abl es(A, Vars) is a built-
and$el enent (I, L, V), are currently supported. in which bindsVar s to the list of variables occurring in

A. The callvars :: 1..NC restricts the domains of the
variables tol. . NC. The f or each loop posts constraints:

C. Solver Invocation

constraints: color assigned td (i.e., A[J]).
+ cp_sol ve(Options, L) Invoke the CP solver. Another model is to useNC Boolean variables for
« i p_sol ve(Options, L) Invoke the IP solver. each node, each variable corresponding to a color. The
+ sat_sol ve(Options, L) Invoke the SAT solver. program in Figure 2 is based on this model. The call

whereOptions is a list of options for the solver (e.gri n(E) new array(A, [NV, NC]) creates a two dimensional array
and max (FE) for optimization, anddunp for dumping the of size NVxNC. The callVars :: [0, 1] make the vari-
model in some format). The reader is referred to the manwdiles Boolean. The firgtor each loop ensures that for each
for the details of the primitives. node only one of its Boolean variables can take value 1. The
nextf or each loop ensures that no two adjacent vertices can

IV. EXAMPLES have the same color. The formula
We present in this section several modeling examples that

use the interface. In all the examples, we ss¢ _solveto $\ All, K] $\/ $\ Al J, K]

1The primitivel p_sol ve(Options, L) is provided to invoke the LP/MIP ensures that the cold(cannot be aSS|gned to both notle
solver. and node].

bcol or (NV, NO) : -
new array(A [NV, NC]),
termvari abl es(A, Vars),
Vars :: [0,1],
foreach(l in 1..Nv,
sum([A[I, K] Kin1..NC) $=1
)

foreach(l in 1..NV-1, J in |+1..NV,
((edge(l,J);edge(J, 1)) ->
foreach(K in 1..NC,
$\ A[I,K $\/ $\ A J, K]
)

true

)
)
sat_sol ve(Vars),
witeln(A).

Fig. 2. Color a graph using Boolean variables.

gueens(N): -
l'ength(Gs, N),
Gt . 1..N
foreach(l in 1..N-1, J in |I+1..N,
(Qs[1] $\= S[J],
abs(Qs[1]-[J]) $\= J-1)

)
sat_sol ve(@),
witeln(Qs).

Fig. 3. A program for the N-queens problem.

B. N-queens problem

bgueens(N) : -
new array(Qs, [N, N),
termvari abl es(Qs, Vars),
Vars :: 0..1,

foreach(l in 1..N, %1 in each row

sum([Qs[|, J] Jin1l..N) $=1
goreach(‘] in 1..N, %1 in each col um
sum([Qs[1,J] : I in1..N) $=1
lzoreach(Kin 1-N.. N1, % at nost one
sum([Gs[1, J]
Il inl1..N Jin1..N, I-J==
) $=<1
)
foreach(K in 2..2%N, % at nost one
sum([Qs[1, J]
Il inl1..N Jin1..N, I+J==
) $=<1
)

sat_sol ve(Vars),
writeln(Vars).

Fig. 4. A model using Boolean variables for N-queens.

constraint
foreach(Kin 1-N. . N1,
sun([QB[1, J]
Il in1..N Jin1..N, [I-J=:=K]
) $=<1
)

ensures that each diagonal that is parallel to the main d&go
contains at most one queen, and the constraint

The N-queens problem is given as follows: Find a layoditor each(K in 2..2xN,
for N queen pieces on an N by N chessboard so that no sun([Qs[I, J]
gueens attack each other. Two queens attack each other if Il in1..N Jin 1..N, I+J=:=K]
they are placed in the same row, the same column, or the) $=< 1

same diagonal.

)

_For the N-queens problem, several models are possiblag res that each diagonal that is parallel to the minowodiaig
Since there are N queens and N rows, each column MUshiains at most one queen

have exactly one queen. One model is to use a variable for _
each column whose value indicates the number of row for tke The Numberlink problem

queen in this column. Figure 3 gives the program based onNumberlink is a logic puzzle made popular by Nikoli [21].
this model. Figure 5 gives a solution to an example problem. Given a grid
The calll engt h((s, N) creates a listQs of N vari- board of a certain dimension with some cells preoccupied by
ables. The callQs :: 1.. N restricts the domains of the pairs of numbers, the puzzle is to find a path for each pair of
variables tol.. N. The foreach loop posts constraints the same numbers such that no paths overlap or intersect with
to ensure that for each two columis andJ (J > |) each other. In Figure 5, the path for each pair of numbers is
the two queens in the two columns are not in the sam@own as connected cells filled with the same numbers.
row (Qs[1] $\= [J]) and not in the same diagonal The problem can be generalized as a graph labeling problem
(@bs(B[1]-Q[JI]) $\= J-1). as follows: given an undirected graphwhose nodes are num-
Another possible model is to use a Boolean variable ftered from 1 taVV” and a set ofVC connection requirements
each square on the board, 1 indicating a queen and 0 indicatach of which takes the formonnecti on(Z, V3, V3) where
empty. Figure 4 shows a program based on this model. The< I < NC, andV; and V5 are nodes in, the problem is

1[1[1]6[6[6[4]4]4]4 nurber i nk(NV, NC) : -
1[7][7|7|7]6|6|6|6]|4 new_array(Arr, [NV]),

117155 5[5|5|5|6]4 termvariabl es(Arr, Vars),

11715121 216l6|l6|6] 4 Vars::l..N_C,

1171512136444l a foreach(Cin 1..NC, [V, V2],

11715121 3/616161616 (connection(C, V1, V2),
1752333333 Arr[Vl] @ C
1/7|5[2|2[2]2]2]2]3 ArT[V2] @Q), _

1171511111 11111213 foreach(V in 1..NV, constrain_node(Arr,V)),
1111111131333 [3[3 sat _sol ve(Vars),

writeln(Vars).

Fig. 5. A solution to an example numberlink problem.
constrain_node(Arr, V1) : -
nei ghbor s(V1, Nei bs),

to label the nodes with numbers from 1 AC' such that for ((connection(C V1, _);
each connection requiremarnnect i on(I, V;, V) there is connection(C, _,V1))->
a path of nodes all labeled withbetween the terminal nodes sun([(Arr[V2] $=C) : V2 in Nei bs]
V1 andV;. We assume that the edges of the graph are given) $=1
as a predicatedge/ 2 and we also assume that the predicate
nei ghbor s(V, Neibs) is available which states that the set sun([(Arr[V1] $=Arr[V2])
of nodes that are directly connecteditois Neibs. V2 in Neibs]

The first model is to use a domain variable for each node) $=2

whose value indicates the label assigned to the node. Figure) -
6 shows the encoding of this model. The loop

foreach(Cin 1..NC, [V1, V2],
(connection(C, V1, V2),

Arr[Vl] @ C Ar[V2] @Q)) an interval, the lower and upper bounds are attached to the
initializes the pre-occupied nodes. For each connectiffiableX as two attributes. Wheb is a set of integers with
requirementconnect i on(C, V1, V2), the label of V1 holes, a b|t_vectqr is attached ¥ to represent the domain.
(Arr[V1]) and the label ofv2 (Arr[V2]) are initialized Each_ domain varla_lble al'_so ha; an a_lttache_d_attr_lbute tHat tel
to C. the list of constraints this variable is participating. Wiha

The predicateconst rai n_node(Arr, V) ensures that constraint is posted, this constraint is just added intoligte

the label assigned to the nodemeets the requirement. ¥ of the participating variables. When a solver-invokingl @I
is a terminal node in a connection requirement, then only ofi§ecuted, the attached constraints are transformed io th

form acceptable to the called solver. This section dessribe
how constraints are transformed. All the transformatidesu
e well known. It's hoped that these transformation rulds w
p explain the experimental results to be presented in the
d%ei(t section.

Fig. 6. A model for the numberlink problem.

neighbor can receive the same labeMastherwise, there are
two neighbors with the same label ¥s

Another model is to use a Boolean variable for each pair
connections and nodes. For a pair of a connection and a n
the node belongs to the connection if and only if the val
of the Boolean variable for the pair is 1. Figure 7 shows th€ Transformation for the CP solver

encoding of this model. The constraint . .
9 The transformation of constraints for the CP solver

sun([Arr[C,Neib] : Neib in Neibs]) $=1 is straightforward. Each constraint is transformed to its

ﬁ?rresponding CLP(FD) constraint. For example,$= Y

IS transformed toX #= Y, and $alldifferent(L)

is transformed to alldistinct(L). The primitive

Arr[C V] $=> cp_sol ve(Options, L) is transformed to
sunm([Arr[C,Neib] : Neib in Neibs]) $= 2 labeling(Options,L).

ensures that there is exactly one neighbor that belongseto
connectionC and the constraint

ensure that ifV belongs to the connectio@ then there are B. Transformation for the IP solver

exactly two neighbors that belong to the connection. For the IP solver, constraints are transformed into ariticne

equality and disequality{ or >) constraints. It's straightfor-
ward to transform Boolean constraints. The following table

The implementation of the interface utilizes domain variyiyes the transformation rules for Boolean constraints rehe
ables in B-Prolog. The primitiveX : : D already exists in y andY are Boolean variables.

B-Prolog for creating finite domain variables. Whéh is

V. IMPLEMENTATION

nunber | i nk(NV, NC) : -

new array(Arr, [NC NV]),

termvariabl es(Arr, Vars),

Vars::0..1,

foreach(Cin 1..NC, [V, V2],
(connection(C, V1, V2),
Arr[C V1] @ 1,
Arr[C V2] @l)),

foreach(V in 1..Nv,
sum [Arr[C V]
) $=1

Cin 1..N

)1

foreach(Cin 1..NC, Vin 1..NV,
constrain_cv(C, V, Arr)

)l

sat_sol ve(Vars),

witeln(Vars).

constrain_cv(C, V1, Arr): -
nei ghbor s(V1, Nei bs),
((connection(C, V1,);
connection(C, ,V1))->
sum([Arr[C, Nei b]
) $=1

Nei b in Neibs]

Arr[C V] $=>
sum([Arr[C, Nei b]
$=2

Nei b in Neibs])

Fig. 7. Another model for the numberlink problem.

Boolean Arithmetic
X$/\VY [X$=1, Y $=1
X8/ Y X+Y $>= 1
X $=>Y X-Y $=< 0
X $<=> Y X$=Y

X Y X+Y $=1

$\ X X$=0

constraintB $=> (X $=< Y) only requires the constraint
(X $=<Y) to be satisfied wheneveB=1, so it can be
transformed toX- Y- ML* (1- B) $=< 0.

Inequality constraints£) are transformed to disequality
constraints by introducing Boolean variables. For exathke
constraintX $\ = Y is transformed to:

Bl $=> (X $< V),
B2 $=> (X $> V),
B1+B2 $= 1

The last constrainB1+B2 $= 1 entails thatBl and B2
cannot both be 0, i.eX cannot be equal t¥.

C. Transformation for the SAT solver

Several methods have been proposed for compiling CSPs
into SAT [8], [26], [10], [25], and several modeling langueesgy
have been developed for SAT such as ASP [5], the Sugar
CSP [24], and BEE [19]. Our implementation supports di-
rect encoding [8], [26] and log-encoding [10], [13], [15],
[16]. For a 0-1 CSP, these two encoding methods generate
the same CNF code. For a variabhlé whose domain is
{a1,as,...,a,}, the direct encoding method usesBoolean
variablesry, zo, . . ., z.,, Wherer; = 1 meansX = q;. Direct
encoding generates clauses to ensure that exactly onesef the
variables can be 1. For a constraint, this method generates
clauses to disallow conflict assignments. For example, for
the constraintX # Y (X,Y € 1..2), four Boolean variables
(@1(X = 1),22(X = 2),y1(Y = 1),52(Y = 2)) are used
to encode the domains, and the two clauses vV —y; and
—xo V —yo are generated to disallow the conflict assignments
(X = 1,Y = 1) and X = 2,Y = 2). In the log-
encoding method, the domaifu,,as,...,a,} is encoded
with [log2(a)]| Boolean variables, where is the maximum
absolute value of the domain values, and a Boolean variable f
the sign if the domain contains negative integers. Eachef th
valuations of the Boolean variables represents a valuedn th
domain and clauses are generated to disallow combinations f
the values that are not in the domain. Equality and disetyuali
constraints are flattened to two types of primitive constsi

Reification constraints are logical constraints and ¢ he form ofx > y andz +y — =, which are compiled

be transformed into IP formulations using the exisly iher to logic adders and comparators in CNF. For other
ing techniques [2]. For example, consider the constraigfas of constraints, clauses are generated to disallofiicton

B $<=> (X $=< Y) whereB is a Boolean variable, and
X and Y are two arbitrary integer domain variables. The

constraint can be transformed to:
X-Y-MLx(1-B) $=< O,

Y- X+1- M*B $=< 0

ubd(X) -1 bd(Y)+1
ubd(Y) - I bd(X) +2.2 WheneverB=0, the first constraint is
trivially satisfied andY- X+1 $=< 0, i.e., X $> Y, must

be satisfied. Whenevd=1, the second constraint is trivially
satisfied, anX- Y $=< 0 must be satisfied. The implication

where ML is

2ubd(X) stands for the upper bound ahtyd(X) the lower bound of the Bl $\/ B2 $\/

domain ofX.

and M

valuations of the variables.

It is time consuming to compile constraints that in-
volve a large number of variables. To speed up compi-
lation, our implementation enforces interval consisteity
the constraints before compilation and exploits bounds in-
formation of domains to avoid enumerating all permuta-
tions of domain values to find conflicts. In particular, for
some constraints that involve only Boolean domain vari-
ables, it never enumerates all the permutations. For exam-
ple, if the constraint iB1+B2+. .. +Bn $> 0 whereBi's

are all Boolean variables, it converts the constraint into
$\/ Bn without enumerating the
values.

TABLE | TABLE Il

CPUTIMES FORcol or. CPUTIMES FORbcol or .

Instance CLP(FD) | Lingeling | CPLEX Instance CLP(FD) | Lingeling | CPLEX
1-graph_125-0 0.70 10.15 >200 1-graph_125-0 >200 53.04 >200
2-graph_125-0 >200 >200 | >200 2-graph_125-0 >200 >200 | >200
3-graph_125-0 0.05 2.90 >200 3-graph_125-0 >200 0.86 >200
4-graph_125-0 417 >200 | >200 4-graph_125-0 >200 >200 | >200
5-graph_125-0 0.74 1.98 | >200 5-graph_125-0 >200 0.61 | 191.11

TABLE Il

CPUTIMES FORqueens.

The branch-and-boundmethod is used to optimize an

e . : L - Inst CLP(FD) | Lingeli CPLEX
objective function. For the first run, the objective functiis nslgnce (o.oc)) mgeo'gg 018
disregarded and only constraints are sent to the solvere Onc 20 0.00 0.99 | 47.71
an answer is returned, the objective function has a value. gg 8-82 21-% >§88
o . . >
For the subsequent run, a new constraint is added to force 100 0.02 3402 | <200

the objective function to have a better value than the ctirren
best answer. This step is repeated until the set of contdrain
become unsatisfiable. At that point, the current best ansver
the final best answer. Table IV shows the CPU times for thqueens program
that uses Boolean variables. CPLEX is a clear winner, which
is followed closely by Lingeling. CLP(FD) is the slowest.
Table V shows the results for tmeinber | i nk program on
The interface has been imp|emented in B-Pro|og and fpye instances taken from the third ASP competition. Llngggell
available with version 7.8 [3]. We have compared three selvdS a clear winner: it solved all the instances while CLP(FD)
including CLP(FD) of B-Prolog, the LP/MIP solver CPLEXand CPLEX each failed to solve the last instance.
[7], and the SAT solver Lingeling [17] on the three problems Table VI shows the results for thunber | i nk program.
given in Section IV. Each of these solvers represents the stAgain, Lingeling is a clear winner. This model works so well
of the art in it's category. For this comparison, direct eting with Lingeling that it solved all the 60 instances submitted
was used by the SAT compiler. In general, log-encoding i8e third ASP competition including a very hard instance [27
more efficient that direct-encoding. The BProlog+SAT splve Overall, no solver is superior all the time. CLP(FD) won
submitted to the MiniZinc Challenge 203Zmploys log- the non-Boolean models for the graph coloring and N-queens
encoding. We did the comparison on a PC with 3GHz Xeon(Ryoblems; CPLEX outperformed Lingeling by a small mar-
CPU 5160 and 160GB running CentOS Linux. All the CP\gin on the Boolean model of the N-queens problems; and
times given in the tables are in seconds. Linegeling won the rest three models. Our results also aonfir
Table | shows the CPU times taken by the solvers #hat models that use Boolean variables are not suited for
run the col or program on five instances from the thirdcLP(FD). This is because, as mentioned above, the first-
ASP solver competition [6]. All the instance graphs haviil labeling strategy is not effective for Boolean variefl
125 nodes. Clearly, CPLEX is not suited for this model. FéPn the other hand, Lingeling works better on 0-1 integer
each disequality constraint, the translated model costmw Programming models than general integer models.
new Boolean variables. CLP(FD) failed to solve one instance
within the 200-second limit and SAT failed two. Note that VII. FINAL REMARKS
the CLP(FD) encoding of the problem that exploits symmetry This paper has presented a common Prolog interface to three
breaking and global constraints solves all the instancsdyea different types of discrete solvers including CP, IP, andr SA
[29]. solvers. With the interface and the new language constructs
Table Il shows the CPU times for thecol or program such as arrays and loops, Prolog can serve as a powerful
that uses Boolean variables. For this program, SAT perfdrmmodeling language for these solvers. CP, IP, and SAT solving
better than CLP(FD), mainly because the first-fail labelingre three different paradigms for solving combinatoriarsh
strategy of CLP(FD) becomes ineffective for Boolean varproblems. Each paradigm has its strengths and weaknesses:
ables. Again, CPLEX is not suited for this model. CP tends to be well suited to problems for which global
Table Il shows the CPU times for thgueens program constraints, symmetry breaking, and problem-specific @rop
on five instances (N is the number of queens). CLP(FD) gstion and labeling can be exploited; IP tends to be welksuit
a clear winner for this program. We have to mention thatta problems that can be naturally expressed with disegualit
large portion of the time taken by SAT is spent on compilingonstraints; and SAT tends to be suited to problems that
constraints into CNF. For example, for N=100, that portioare intrinsically Boolean. Our experimental results confio
accounts for 50% of the time. some extent these observations.
In reality, it requires extensive experimentation to find a
3http:/ww.g12.csse.unimelb.edu.au/minizinc/chaje2012/challenge.htmlright model and a right solver. The interface presented is th

VI. EXPERIMENTAL RESULTS

TABLE IV
CPUTIMES FORbqueens.

Instance | CLP(FD) | Lingeling | CPLEX
10 0.00 0.00 0.01
20 0.15 0.07 0.02
30 64.82 0.28 0.19
50 >200 121 0.08
100 >200 10.97 5.66

TABLE V
CPUTIMES FORnunber | i nk.

Instance CLP(FD) | Lingeling | CPLEX
2-nunberli nk-0-0. asp 0.00 0.00 0.01
9- nunberl i nk-0-0. asp 0.01 0.05 0.08

111- nunber | i nk- 0- 0. asp 0.01 0.15 0.16
120- nunber | i nk- 0- 0. asp 0.01 0.22 0.13
48- nunber | i nk- 0- 0. asp >200 6.42 >200

paper provides a common and easy platform for experime%t—
ing with different solvers and models. Compared with othék7]
hosting languages such as C++ and Java, Prolog allows

TABLE VI
CPUTIMES FORbnunber | i nk.

Instance CLP(FD) | Lingeling | CPLEX
2-nunberlink-0-0. asp 0.00 0.00 0.00
9- nunber | i nk-0-0. asp 0.01 0.01 0.15

111- nunber | i nk- 0- 0. asp 0.03 0.02 0.37
120- nunber | i nk- 0- 0. asp 0.04 0.04 0.97
48- nunber | i nk- 0- 0. asp >200 2.23 >200

[12]
[13] Allen Van Gelder.

[14]
[15]

] Kazuo Iwama and Shuichi Miyazaki.

[11] Martin Gebser, Roland Kaminski, Benjamin Kaufmann,X\@strowski,

Torsten Schaub, and Sven Thiele. A User’s Guide to gringspgiclingo
and iclingo. Technical report, University of Potsdam, 2011
Gecode. www.gecode.org.

Another look at graph coloring via positional
satisfiability. Discrete Applied Mathematicd56(2):230-243, 2008.

Pascal Van Hentenryck. Constraint and integer progmang in OPL.
INFORMS Journal on Computing.4:2002, 2002.
Jinbo Huang. Universal booleanization of constrairadels. InCP,

pages 144-158, 2008.

Sat-varible comgiexof hard
combinatorial problems. ItFIP Congress (1) pages 253-258, 1994,
Lingeling. fmv.jku.at/lingeling.

Sharad Malik and Lintao Zhang. Boolean satisfiabilftpgm theoretical
hardness to practical succes3ommun. ACM52(8):76—-82, 2009.

natural encodings of constraints; and compared with othes] Amit Metodi and Michael Codish. Compiling finite domagonstraints
modeling languages such as OPL, Prolog as a general-purposeto sat with bee TPLP, 12(4-5):465-483, 2012.

language allows for easy integration of constraint solvasg

a component into a large application.

With tabling for dynamic programming solutions and?ll
CLP(FD) for CSPs, the newly added common interface with?
SAT and LP/MIP certainly enriches the B-Prolog toolboxe3]
for solving combinatorial search and optimization prolbdem
Nevertheless, unlike for ASP, the user of B-Prolog has .
choose which tool to use for a problem specification. Aps]

interesting direction for further work is to develop a cofapi

for ASP in B-Prolog that automatically chooses what tools
use for a problem specification. Other further work includgs?)
investigating different compilation methods for SAT satye [28]
hybridization of solvers, and running multiple solvers il’[\zg]

parallel in a distributed environment.

(1]
(2]

(3]
(4]
(5]
(6]

(7]
(8]

[9]
[20]

REFERENCES

AMPL. www.ampl.com.

Gautam M. Appa, Leonidas Pitsoulis, and H. Paul Williariandbook
on Modelling for Discrete OptimizationSpringer, 2010.

B-Prolog. www.probp.com.

Marcello Balduccini and Yulia Lierler. Practical and thedological
aspects of the use of cutting-edge ASP tools.PKDL, pages 78-92,
2012.

Gerhard Brewka, Thomas Eiter, and Miroslaw Truszczynsknswer
set programming at a glanc€ommun. ACM54(12):92-103, 2011.
Francesco Calimeri, Giovambattista lanni, Frances@x&® Mario Al-
viano, Annamaria Bria, Gelsomina Catalano, Susanna Cd¥atgang
Faber, Onofrio Febbraro, Nicola Leone, Marco Manna, Aledsa
Martello, Claudio Panetta, Simona Perri, Kristian Realayil Carmela
Santoro, Marco Sirianni, Giorgio Terracina, and Pierfesmo Veltri.
The third answer set programming competition LPNMR pages 388—
403, 2011.
CPLEX.
optimizer/.
Johan de Kleer. A comparison of ATMS and CSP techniquesJCAI,
pages 290-296, 1989.

GAMS. www.gams.com.

Marco Gavanelli. The log-support encoding of CSP in®r'Sin CP,
pages 815-822, 2007.

www-01.ibm.com/software/integration/optiration/cplex-

] Nicholas Nethercote, Peter J. Stuckey, Ralph BeckebaStian Brand,

Gregory J. Duck, and Guido Tack. Minizinc: Towards a staddaP
modelling language. IICP, pages 529-543, 2007.

Nikoli. www.nikoli.com/.

Francesca Rossi, Peter van Beek, and Toby Waldthandbook of
Constraint Programming Elsevier, 2006.

Kish Shen and Joachim Schimpf. Eplex: Harnessing nmadtieal
programming solvers for constraint logic programming. dR, pages
622-636, 2005.

] Sugar. bach.istc.kobe-u.ac.jp/sugar/.

Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mauatxi Ban-
bara. Compiling finite linear CSP into SATonstraints 14(2):254-272,
2009.

] Toby Walsh. SAT v CSP. II€P, pages 441-456, 2000.

Neng-Fa Zhou. www.probp.com/cgat Ip/numberlink hard.html.
Neng-Fa Zhou. The language features and architectfi®-@rolog.
TPLP, Special Issue on Prolog Systerh&(1-2):189-218, 2012.
Neng-Fa Zhou, Agostino Dovier, and Yuanlin Zhang. BRE&s
solutions to the third ASP competition problemsALP Newsletter
(June), 2011.

