Parameter Passing and Control Stack Management
in Prolog Implementation Revisited

NENG-FA ZHOU
Kyushu Institute of Technology

Parameter passing and control stack management are two of the crucial issues in Prolog imple-
mentation. In the Warren Abstract Machine (WAM), the most widely used abstract machine for
Prolog implementation, arguments are passed through argument registers, and the information
associated with procedure calls is stored in possibly two frames. Although accessing registers is
faster than accessing memory, this scheme requires the argument registers to be saved and re-
stored for backtracking and makes it difficult to implement full tail recursion elimination. These
disadvantages may far outweigh the advantage in emulator-based implementations because regis-
ters are actually simulated by using memory. In this article, we reconsider the two crucial issues
and describe a new abstract machine called ATOAM (yet Another Tree-Oriented Abstract Ma-
chine). The ATOAM differs from the WAM mainly in that (1) arguments are passed directly
into stack frames, (2) only one frame is used for each procedure call, and (3) procedures are
translated into matching trees if possible, and clauses in each procedure are indexed on all input
arguments. The above-mentioned inefficiencies of the WAM do not exist in the ATOAM because
backtracking requires less bookkeeping operations, and tail recursion can be handled in most cases
like a loop statement in procedural languages. An ATOAM-emulator-based Prolog system called
B-Prolog has been implemented, which is available through anonymous ftp from ftp.kyutech.ac.jp
(181.206.1.101) in the directory pub/Language/prolog. B-Prolog is comparable in performance
with and can sometimes be significantly faster than emulated SICStus-Prolog. By measuring the
numbers of memory and register references made in both systems, we found that passing argu-
ments in stack is no worse than passing arguments in registers even if accessing memory is four
times as expensive as accessing registers.

Categories and Subject Descriptors: D.1.6 [Programming Techniques]: Logic Programming;
D.3.4 [Programming Languages|: Processors—compilers

General Terms: Experimentation, Languages

Additional Key Words and Phrases: Abstract machine, Prolog

1. INTRODUCTION

Prolog, unlike procedural programming languages, lacks explicit control constructs
for specifying loops and facilities for accessing global variables. Loops are usually
specified as tail-recursive procedures, and each procedure has to take enough argu-
ments through which inputs are given and outputs are returned. For these reasons,

Author’s address: Faculty of Computer Science and Systems Engineering, Kyushu Institute of
Technology, 680-4 Kawazu, lizuka, Fukuoka 820, Japan; email: zhou@mse.kyutech.ac.jp.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright /server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.

© 1999 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Programming Languages and Systems, November 1996

2 . Neng-Fa Zhou

it is imperative that Prolog compilers generate good code for procedure calls and
returns and handle tail recursion efficiently.

In the WAM, arguments of a procedure call are passed from a calling proce-
dure (caller) to a called procedure (callee) through argument registers. They are
first transferred from the caller’s frame or some other argument registers to ap-
propriate argument registers, and then, when necessary, they are transferred into
the callee’s frame. The WAM uses two kinds of frames for storing information
associated with procedure calls. One is called environment, which stores the con-
tinuation program point and local variables, and the other is called choice point,
which stores the machine status registers and the argument registers that need be
restored upon backtracking. Warren [1983] made these decisions based probably on
the following considerations. First, passing arguments in registers would be faster
than passing arguments in stack frames because manipulating registers is faster
than manipulating frame slots. Even in an emulator-based implementation where
argument registers are actually simulated by using memory, manipulating registers
is faster than manipulating frame slots because of the so-called direct addressing,
i.e., computing addresses of “registers” at load time. Second, storing information
about a call into two frames would be space efficient, because in some cases only an
environment frame, and in some other cases only a choice point frame, is adequate.

However, the WAM is awkwardly inefficient for some kinds of programs. Consider
the following motivating example:

intersect([],S,[]).

intersect ([X|Xs],S2, [X|Ys]):-
membchk (X,S2),!,
intersect(Xs,S52,Ys).

intersect([X|Xs],S2,S83):-
intersect(Xs,S52,S83).

This procedure computes the intersection of two sets represented as lists. It specifies
a loop where backtracking is only a conditional jump. Ideally, the code for the
procedure should create a frame only once and reuse it repeatedly in the loop.
Unfortunately, due to the parameter passing and control stack management schemes
adopted in the WAM, both a choice point and an environment have to be created
and discarded each time the loop is executed, and the argument register storing
S2 has to be saved in both frames. By using the factoring [Van Roy 1990] and
flattening techniques used in KL1 programming [Ueda and Chikayama 1990], the
procedure can be translated into:

intersect([],S,[]1).
intersect([X|Xs],S2,S83):-
membchk_aux(X,S2,0k),
intersect_aux(Xs,S2,S83,X,0Kk).
intersect_aux(S1,52,S83,X,0k) :-
Ok=:=1,1!,
S3=[X184],
intersect(S1,52,54).
intersect_aux(S1,52,S83,X,0k):-
intersect(S81,52,S3).

ACM Transactions on Programming Languages and Systems, 1996

Parameter Passing and Control Stack Management for Prolog . 3

The procedure call membchk _aux (X,S32,0Kk) is similar to membchk (X,S52), but takes a
new argument Ok that will be bound to 1 or 0 depending on whether membchk (X,52)
succeeds or not. Although no choice point manipulation is necessary for the trans-
lated program, an environment still needs be created and discarded repeatedly in
the WAM.

The example program is a common pattern of most Prolog programs where
loops are specified as tail-recursive procedures and where the condition for choosing
clauses is not inline. To eliminate the above-mentioned inefficiencies of the WAM,
we designed and implemented a new abstract machine, called ATOAM, that differs
from the WAM mainly in that (1) arguments are passed directly into stack frames,
(2) only one frame is used for each procedure call, and (3) procedures are translated
into matching trees if possible, and clauses in each procedure are indexed on all
input arguments. The ATOAM has the following advantages over the WAM: (1)
backtracking becomes simpler because no argument registers need be saved and
restored for backtracking, and some procedures with deep guards, i.e., noninline
tests, can be treated as determinate; and (2) tail recursion is converted into iter-
ation, and thus it becomes unnecessary for tail-recursive procedures to create and
discard frames repeatedly in many cases. The disadvantage of the ATOAM is that
it lost some merits available in the WAM, such as the frame-trimming technique.

The readers are assumed to be familiar with compiler design for procedural lan-
guages and Prolog programming. The knowledge about the WAM is not mandatory,
albeit helpful, for understanding the ATOAM architecture. In the next section,
we give a brief and informal introduction to the WAM. In Section 3, we define
two intermediate representation forms of programs called canonical-form Prolog
and matching tree, respectively. In Section 4, we describe the architecture of the
ATOAM. In Section 5, we present the storage allocation algorithm, and in Section
6 we focus on the tail recursion elimination technique. In Section 7, we report
the experimental results. In Section 8, we compare thoroughly the ATOAM with
the WAM and some other variants, and in Section 9, we point out some further
improvements.

2. THE WAM: AN EXCURSION

The WAM is an abstract machine that consists of a memory architecture and an
instruction set for encoding Prolog programs. We briefly survey the WAM, an-
swering questions about how terms are represented, how unifications are compiled,
how arguments are passed, and how the control stack is managed. The reader is
recommended to refer to Ait-Kaci [1991] and Van Roy [1994] for the details.

2.1 Term Representation

There is a data area called code area that contains, besides instructions compiled
from programs, a symbol table that stores information about the atom, function,
and procedure symbols appearing in the programs. There is one record for each
symbol in the symbol table storing such information as the name, arity, type, and
entry point if the symbol is defined.

A term is represented by a word containing a value and a tag. The tag distin-
guishes the type of the term. It may be REF denoting a reference, INT denoting an
integer, ATM denoting an atom, STR denoting a structure, or LST denoting a list.

ACM Transactions on Programming Languages and Systems, 1996

4 . Neng-Fa Zhou

fl4

STR r self |REF

a/0 |ATM

L |LsT
I:, 1 |INT
0o |atwm

Fig. 1. Internal representation of f(X,a,X, [1]).

The value of a term is an address except when the term is an integer (in this
case, the value represents the integer itself). The address points to a different
place depending on the type of the term. The address in a reference points to the
referenced term. An unbound variable is represented by a self-referencing pointer.
The operation that looks for the value at the end of a reference chain is called
dereference. The address in an atom points to the record for the atom symbol in
the symbol table. The address in a structure f(t1,...,t,) points to a block of n+1
consecutive words in an area called heap where the first word points to the record
for the functor f/n in the symbol table, and the remaining n words store the n
components of the structure. The address in a list [H|T] points to a block of two
consecutive words in the heap where the first word stores the car H, and the second
word stores the cdr T'.

For example, Figure 1 shows a possible representation of the term f (X,a,X, [1]),
where self is a self-referencing pointer.

2.2 Compiling Unification

A general unification procedure is costly, since it has to check the types of the
terms to be unified. In the WAM, a unification call is encoded into a sequence
of specific unification instructions if either operand is known at compilation time.
For example, the code for the call X=a performs the unification as follows. If X
is a variable, then bind X to a; if X is an atom, then test whether it is equal to
a; otherwise, it is fail. The compiled code does no test of the type of the second
operand.

2.3 Parameter Passing and Stack Management

In the WAM, clauses in each procedure are compiled separately. The code for the
head of each clause performs unification between a call and the head, and the code
for the body passes arguments and control to the callees and handles control returns.
Arguments are passed from the caller to the callee through argument registers: the
first one is placed in the first argument register; the second one is placed in the
second argument register, and so on.

The argument registers need be saved when there are multiple candidate clauses
to be tried. Some of them also need be saved when the callee is not binary. Consider
the second clause in our motivating example:

ACM Transactions on Programming Languages and Systems, 1996

Parameter Passing and Control Stack Management for Prolog . 5

intersect ([X[Xs],S2, [X|Ys]):-
membchk (X,S2),!,
intersect(Xs,S52,Ys).

Before the call membchk (X,S2) is executed, the second argument register storing S2
has to be saved because its content may be destroyed in the execution of membchk.
In the WAM, an environment frame of the following structure is pushed onto the
local stack before a nonbinary clause is executed:

Parent: Parent environment
CP: Continuation program point
Yi,...,Ym: Permanent variables

where Y1, ...,Ym are variables, called permanent variables, that can survive longer
than a call. In the clause, the variables Xs, S2, and Ys are permanent.

The code for separate clauses in a procedure is connected by indexing and back-
tracking instructions. The indexing code divides the clauses into several groups,
based on the main functors of the first arguments of the heads. For each group
that has multiple candidates, backtracking instructions are generated to ensure
that when one clause fails the next one will be tried. Consider again our example
procedure. For a call whose first argument is a list, the indexing code will clas-
sify the second and the third clauses into the same group, and thus backtracking
instructions connecting the code for these two clauses will be generated.

Backtracking instructions create and manipulate choice points which have the
following fields:

P: Alternative program point

CP: Continuation program point
E: Current environment frame

B: Current choice point frame
T: Top of the trail stack

H: Top of the heap

X1,...,Xn: Argument registers

For our example procedure, before the second clause is entered, a choice point
is created, whose fields have the following meaning: P points to the code of the
third clause such that control can be moved there when the second clause fails; CP
stores the continuation program point to go to when the second clause succeeds;
E points to the latest environment frame which will become the current one after
the second clause succeeds; B points to the parent choice point frame; T points to
the top of another stack called trail stack where the updates done to the arguments
by the second clause are stored; H points to the top of the heap with which the
space occupied by the terms created by the second clause can be released before
execution backtracks to the third clause.

3. INTERMEDIATE REPRESENTATION

Figure 2 depicts the compilation phases in the B-Prolog compiler. The special-
ization phase translates a given program into canonical-form Prolog where input
and output unifications are separated and where determinism of clauses is denoted

ACM Transactions on Programming Languages and Systems, 1996

6 . Neng-Fa Zhou

Program

Specialization

Canonical-form program

[Tree construction

MatchirYg trees

Code generation

ATOAM code

Fig. 2. Compilation phases.

explicitly. The tree construction phase constructs a tree, called matching tree, for
every procedure in the canonical-form program. The code generation phase com-
putes the properties of the matching trees and generates executable code based on
them.

3.1 Canonical-Form Prolog

In canonical-form Prolog, each procedure is defined by a sequence of matching
clauses in the form of

H:-G : B. (1)
or
H:-G ? B. (2)

H is an atomic formula; G and B are two sequences of atomic formulas; the colon
(:) is called a determinate choice operator; and the question mark (?7) is called a
nondeterminate choice operator. H is called the head; G is called the guard; and B
is called the body of the clause.

One-directional matching rather than full unification is used to choose clauses for
a selected goal. A clause is applicable to a goal C if C matches the head, i.e., the head
becomes identical to the goal after a substitution is performed to it (H8 = C), and
the guard succeeds (G8). The choice operator : indicates that the goal is committed
to the clause, and thus the remaining clauses will not be tried when B fails; whereas,
the ? indicates that when B fails, the remaining clauses will be tried.

A procedure is said to be determinate when all the choice operators in its defini-
tion are determinate; otherwise, it is said to be nondeterminate when the ? choice
operator is used at least once in its definition. A procedure is said to be globally
determinate if it is determinate and if no procedure called directly or indirectly by
the calls in the bodies is nondeterminate. A call is said to be inline if its evaluation
does not invoke any procedure. A procedure is said to be binary if the guard of
any clause in it consists only of inline calls and if the body consists of at most one

ACM Transactions on Programming Languages and Systems, 1996

Parameter Passing and Control Stack Management for Prolog . 7

noninline call to the left of which there may exist some inline calls. A procedure is
said to be flat if the guard of any clause in it consists only of inline calls. A proce-
dure is said to be nonflat if the guard of at least one clause is deep, i.e., contains
noninline calls. The guard G must be a sequence of calls to globally determinate
procedures. No call in it can bind any variable in the head unless it succeeds and
unless the : is guaranteed to follow it.

Recall the intersect/3 procedure. Suppose the first two arguments are inputs
and that the third argument is output; then the procedure can be translated into

intersect([],S2,S3) :-true : S3:=[].
intersect([X|Xs],S2,S83):-
membchk (X,S2)
S3:=[X|Ys],
intersect(Xs,S2,Ys).
intersect ([X|Xs],S2,S83) :—-true :
intersect (Xs,52,83).

where :=/2 denotes assignment. This procedure is determinate because only deter-
minate choice operators are used, and it is nonflat because the call membchk (X,S52)
is not inline.

3.2 Specialization Algorithm

We can translate a Prolog program into canonical-form Prolog by moving all uni-
fications in the head into the body for every clause. For example, the procedure

p(a).
p().

can be translated into:

p(X):-true 7 X=a.
p(X):-true : X=b.

However, the resulting program would be terribly inefficient because procedures in
it tend to be nondeterminate.

The specialization algorithm adopted in the B-Prolog compiler is as follows. For
each procedure, if there are two consecutive clauses whose heads have nonvariable
terms in the same argument position, then specialize the procedure into two: one
taking care of the input case and the other taking care of the output case of the
argument. The specialization is done only for one argument position. For example,
the example procedure shown above is specialized into

p(X) :-var(X) : p_aux(X).
p(a) :-true : true.

p(b) :-true : true.
p_aux(X) :-true 7 X:=a.
p_aux(X) :-true : X:=b.

This algorithm, although simple, is far from satisfactory because (1) it duplicates
the code for procedures, (2) it does not do global program analysis and thus cannot
identify deep guards, and (3) the resulting procedures cannot be indexed on more
than one argument.

ACM Transactions on Programming Languages and Systems, 1996

8 . Neng-Fa Zhou

p/2
/\
[T1[T2]<=A2 A1>0
0<=T1 c3
[T3|T4]<=T2
1<=T3 0<=T3
[<=T4 [<=T4
cl c2

Fig. 3. The matching tree for p/2.

3.3 Matching Tree

Procedures in a canonical-form program are translated into matching trees one to
one. A matching tree consists of a root, test nodes, and leaves. Each path from the
root to a leaf corresponds to a clause in the procedure. The test nodes in the path
represent the head and the guard, and the leaf represents the body of the clause.
The purpose of this translation is to merge the tests shared by multiple clauses into
one and eliminate redundant evaluation of shared tests [Zhou 1993].

Consider, for example, the following canonical-form procedure:

p(A1,[0,1]) :—-true 7 true.
p(A1,[0,0]) :—true ? true.
p(A1,A2):-A1>0 : s(A1,A2).

The matching tree constructed for the procedure is shown in Figure 3, where <=/2
denotes one-directional matching. This tree is not optimal in terms of the number of
nodes. If [1<=T4 is attached to the tree before 1<=T3 and 0<=T3, then the resulting
tree will contain one less node.

A leaf is said to be determinate if its corresponding clause is determinate. A
matching tree is said to be determinate if its corresponding procedure is determi-
nate. The neighboring node of a node u is the sibling node to the right of u if
there is such a sibling; otherwise, it is the neighboring node of the parent of . The
neighboring node of the root is fail. The alternative node of a node w is the node
to go to after u fails. It is computed as follows: if u is a determinate leaf, then it is
fail; otherwise, it is the nearest neighboring node of u that is not mutually exclusive
with any ancestor of u. The alternative and neighboring nodes of a node may not
be the same.

For example, in Figure 3, the alternative node of 1<=T3 is 0<=T3, its neighboring

ACM Transactions on Programming Languages and Systems, 1996

Parameter Passing and Control Stack Management for Prolog . 9

Binary Flat
arguments arguments
(AR = AR Lar =] ar
CPS CPS
TopP local vars TOP
local vars
TOP [
Nonflat Nondet
arguments arguments
AR - AR AR —=> AR
SB CPS *]DB cPS
TOP TOP
B B
CPF CPF
local vars H
TOP = T
local vars
TOP =

Fig. 4. The structures of frames.

node, but the alternative node of [1<=T4 below 1<=T3 is A1>0 because its neigh-
boring node 0<=T3 is mutually exclusive with 1<=T3.

A call to a procedure is evaluated by visiting the nodes in the corresponding
matching tree in preorder. When a node succeeds, its leftmost child is visited;
otherwise, its alternative node is visited.

4. THE ATOAM
4.1 Data Areas

The ATOAM uses all the data areas used by the WAM. The heap stores terms cre-
ated during execution. The trail stack stores those variables that must be unbound
upon backtracking. The control stack stores frames associated with procedure calls.
Each time when a procedure is invoked by a call, a frame (see Figure 4) is placed
on top of the control stack unless the frame currently on top of the control stack
can be reused.

The structures of frames differ for different types of procedures. For binary pro-
cedures that are determinate, a frame contains the arguments, the AR slot pointing
to the parent frame, the CPS slot storing the continuation program point to go to
on success, and some local variables.

For flat procedures that are determinate, a frame contains, in addition to those
in a frame for a binary procedure, a slot called TOP that points to the top of the
control stack.

For procedures that are nonflat but determinate, a frame contains, in addition

ACM Transactions on Programming Languages and Systems, 1996

10 : Neng-Fa Zhou

to the slots in a frame for a flat procedure, two other slots: the B slot pointing to
the frame of the latest predecessor of the call that has alternative program points
to be tried and the CPF slot storing the alternative program point to go to after a
branch if the procedure fails.

For procedures that are nondeterminate, a frame contains, besides the slots in a
frame for a nonflat procedure, two other slots: the H slot pointing to the top of the
heap and the T slot pointing to the top of the trail stack.

In the following, we will denote arguments as A;, Az, and so on, and local
variables as Y7, Y5, and so on. In fact, arguments and local variables are identified
internally by different offsets with respect to the AR slot. We will call the frame of a
nondeterminate procedure a deep choice point, and the frame of a nonflat procedure
a shallow choice point.

4.2 Registers

The current machine status is indicated by the following group of registers:

P: Current program pointer

TOP: Top of the control stack

AR: Current frame

H: Top of the heap

T: Top of the trail stack

DB: Latest deep choice point

SB: Latest shallow choice point

HB: H slot of the latest deep choice point

The last three registers need further explanation. The DB register points to the
latest deep choice point. The SB register points to the latest shallow choice point.
When a failure occurs, the contents of DB and SB are compared. If DB is younger
than SB (younger(DB,SB)), then deep backtracking is invoked; otherwise, shallow
backtracking is invoked. DB and SB never have the same contents. The differences
between shallow and deep backtracking will become clear later.

The HB register is used in checking whether or not a variable needs to be trailed.
It always holds the content of the H slot in the latest deep choice point. When a
variable is bound, if it is older than HB or DB, then it is trailed.!

The two registers named S and RW of the WAM are also used. The S register
points to the next component of a compound term to be processed, and the RW de-
notes the mode of unification: read or write. In addition, some temporary registers
denoted as X, X5, and so on are used.

4.3 Instructions

The instructions are classified into basic and control instructions. The basic in-
structions consist of jump, hash, fetch, move, build, unify, unify argument, assign,
and parameter-passing instructions. The control instructions consist of allocate, call
and return, and backtracking instructions. Figure 5 shows the instruction set.

1One register, say B, that points to the latest choice point, whether deep or shallow, would be
sufficient if we let the code pointed to by the CPF slot handle failure. However, it is beneficial
using two registers because the variables that are older than SB but younger than DB need not
be trailed when being bound.

ACM Transactions on Programming Languages and Systems, 1996

Parameter Passing and Control Stack Management for Prolog

Jump and conditional jump:

jump L

jmpn_eq_struct Z,f/n,L
jmpn_eq_atom Z,a,L
jmpn_eq_int Z,N,L
jmpn_var Z,L

jmp_var Z,L
switch_on_list Z,L1,L2

Hash:

hash Z,((vi1,L1),...,(vn,Ln),L)

Fetch:

fetch_var Z
fetch_void N

Move:

move_struct Z,f/n
move_atom Z,a
move_int Z,N
move_list Z
move_var Z
move_value Z1,Z2

Assign:

assign_struct Z,f/n
assign_atom Z,a
assign_int Z,N
assign_list Z
assign_value Z1,Z2

Build:

build_struct f/mn
build_atom a
build_int N
build_list
build_var Z
build_value Z
build_void N

Unify:
unify_struct Z,f/a
unify_atom Z,a
unify_int Z,N
unify_list Z
unify_value Z1,Z2

Unify argument:
unify_arg_struct f/n
unify_arg_atom a
unify_arg_int N
unify_arg_list
unify_arg_var Z
unify_arg_value Z
unify_arg_void N

Parameter passing:
para_struct f/n
para_atom a
para_int N
para_list
para_var Z
para_value Z
para_void N

Control:
call q
execute q
allocate_flat N
allocate_nonflat N
allocate_nondet N
return
fork L
fail
commit
cut
jump_on_det L
save_ht_jump L

Fig. 5. The ATOAM instruction set.

11

ACM Transactions on Programming Languages and Systems, 1996

12 . Neng-Fa Zhou

4.3.1 Basic Instructions. Basic instructions perform data movement and differ-
ent kinds of unifications. They must obey the following two rules:

(1) References on the heap must never point to the control stack.
(2) No variable can reference any variables that are younger than it.

These rules are necessary for preventing pending references, i.e., pointers pointing
to a discarded data area, from occurring.

Conditional Jump. These instructions correspond to inline tests. A conditional
jump instruction tests a condition and moves control to the destination if the condi-
tion is satisfied. For example, the instruction jmpn_eq_atom A1,a,L moves control
to L if A1 is not equal to the atom a; otherwise, it moves control to the next
instruction. The string jmpn is the abbreviation for jump on not.

Hash. A hash instruction takes the form of hash Z, ((v1,11), .-, (Un, ln), lny1). It
tests the term in Z and moves control to a destination obtained by applying a hash
function to the term. All vs(1 < I; < n) are mutually distinctive atoms, integers,
or functors each of which is associated with an address. [,,41 is the address to go
to when the hashing value of Z is different from that of any v,.

Fetch. There are one or more fetch instructions following jmpn_eq_struct and
Jjmpn_eq_list that are responsible for fetching the components of the compound term
just tested. The jmpn_eq struct and jmpn_eq_ list instructions set the S register
to let it point to the first component when the tests succeed. After fetching a
component, a fetch instruction will increment the S register and let it point to the
next component.

Mowve. A move instruction moves an operand to a frame slot or a register, or it
moves data between frame slots and registers. For a move instruction, if the source
is a frame slot, then the source must be dereferenced. If the dereferenced value is
an unbound variable in the current frame, then the instruction must globalize it by
creating a new variable on the heap and letting the original variable point to the
new variable, for example:

p(U, V) :-q(V,0).

It is possible for the tail call q(V,U) to reuse the frame of p(U,V). The two argu-
ments must be swapped before q(V,U) is executed. The generated code is:

p/2: move_value X1,A1
move_value A1,A2
move_value A2,X1
execute q/2

The first two instructions have to dereference Al and A2 and globalize them if
necessary, because Al and A2 are frame slots. To understand this necessity, the
reader is encouraged to check what will happen if A1 and A2 happen to be two
different unbound variables in the current frame.

Build. These instructions are responsible for building components of a compound
term on top of the heap. The build_value Z instruction must dereference Z if Z is
a frame slot. If the dereferenced value of Z is an unbound variable on the stack,

ACM Transactions on Programming Languages and Systems, 1996

Parameter Passing and Control Stack Management for Prolog : 13

then the unbound variable must be globalized.? The build_struct and build_list are
used only to encode the last components of compound terms. There are similar
instructions in some WAM variants [Carlsson 1990].

Unify and Unify-Argument. Unify instructions correspond to calls of the =. There
are one or more unify-argument instructions following wunify_struct and unify_list
that are responsible for unifying components of the compound term. The unify_struct
Z,f/ninstruction will set the RW and S registers as follows. If Z is a compound term
whose functor is equal to f/n, then set RW to read mode, and set S to let it point to
the first component of the compound term; otherwise, if Z is an unbound variable,
then set RW to write mode, but do not touch the S register. The unify_list instruc-
tion behaves similarly. Unify-argument instructions behave differently according
to the content of RW. In write mode, they act like build instructions, whereas in
read mode, they unify the next component pointed to by the S register with the
operand.

Assign. Assign instructions correspond to calls of the :=. Unlike unify instruc-
tions, they need not set the RW and S registers.

Parameter Passing. A parameter-passing instruction passes an argument to the
frame of the callee by placing it in the position pointed to by the TOP register.
Each time after an argument is passed, the TOP register is decremented.

4.3.2 Control Instructions. A call is said to be globally determinate if it does
not leave any choice points behind after it succeeds. The condition for globally
determinate procedures is stronger than that for globally determinate calls. A call
of a globally determinate procedure is globally determinate, but not vice versa. For
example, consider the following procedure:

p(X):-true ? X=a,!.
p(X):-true : X=b.

This procedure is not determinate, but any call to it is globally determinate.
For a clause

P:- G OP Q,R.

Q and R are two noninline procedure calls, and OP is a choice operator. If OP is :
and Q is determinate, then the generated code would have the following skeleton:

allocate a frame

... % code for P and G
... % code for ’:’

pass arguments of (

call Q

rearrange arguments of R

2In many recent systems such as Aquarius-Prolog [Van Roy 1990], BinWAM [Tarau 1991], and
VAM [Krall and Berger 1995], unbound variables are stored on the heap. This new scheme makes it
unnecessary to globalize unbound stack variables in the move_value and build_value instructions.
In addition, it also makes a trailing check cheaper. We retain the WAM'’s scheme of storing
unbound variables on the stack because the new scheme increases the lengths of reference chains
and takes more heap space. In fact, we found that the WAM’s scheme performs no worse on
average than the new scheme.

ACM Transactions on Programming Languages and Systems, 1996

14 . Neng-Fa Zhou

execute R

If OP is : but Q is not known be to determinate, then the generated code looks
like
allocate a frame
... % code for P and G
... % code for ’:’
pass arguments of (
call @
jump_on_det L
pass arguments of R
call R
return
L:rearrange arguments of Q
execute R

Two streams of code are generated for the tail call, one reusing the current frame
and the other not. The jump_on_det instruction determines which stream is to be
executed.

jump_on_det L:
if (younger(AR,DB)) % AR is younger than DB
P=1L;

If 0P is 7, then the following skelton of code will be generated:

allocate a frame

... % code for P and G
fork instruction

pass arguments of Q
call @Q

pass arguments of R
call R

return

The fork instruction sets the backtracking point to go to after the body fails. The
tail call R is treated in the same way as Q, and the frame of the head procedure is
not reused.

Allocate. There is one allocate instruction at the entry point of every procedure
except when the procedure is binary as well as determinate. The allocate instruc-
tion is responsible for fixing the size of the frame and saving some bookkeeping
registers. In case when the procedure is binary as well as determinate, the part of
frame created by the caller is enough for executing the callee, and thus no allocate
instruction is necessary.

—allocate_flat N is responsible for allocating a frame for those determinate proce-
dures that are flat, but not binary.

allocate_flat N:
TOP = AR-N;
AR->TOP = TOP;

ACM Transactions on Programming Languages and Systems, 1996

Parameter Passing and Control Stack Management for Prolog : 15

—allocate_nonflat N is responsible for allocating a frame for those determinate
procedures that are nonflat.

allocate_nonflat N
TOP = AR-N;
AR->TOP = TOP;
AR->B = SB;

SB = AR;

—allocate_nondet N is responsible for allocating a frame for nondeterminate proce-
dures.

allocate_nondet N:
TOP = AR-N;
AR->TOP = TOP;
AR->B = DB;
AR->H = H;
AR->T = T;

HB = H;
DB = AR;

Call and Return. There are two instructions for noninline calls, one named call
corresponding to an intermediate call and the other named ezecute corresponding
to a tail call that can reuse the frame of the head procedure. The return instruction
returns control to the caller.

—call ¢ fills in the AR and CPS slots of the frame for ¢ and moves control to q.

call q:
*TOP = AR;
AR = TOP;
AR->CPS = P;
P = entrypoint(q);

—ezecute ¢ just moves control to q.

execute Qq:
P = entrypoint(q)

—return, before returning control to the caller, computes the new top of the control
stack.

return:
P = AR->CPS;
AR = AR->AR;

TOP = younger(AR,DB) 7 AR->TOP : DB->TOP;
Backtracking. Backtracking instructions are responsible for treating failures.
—fork L lets the CPF slot of the current frame hold L.

fork L:
AR->CPF = L;

ACM Transactions on Programming Languages and Systems, 1996

16 : Neng-Fa Zhou

—fail first determines the type of the failure. If SB is younger than DB, then it
invokes shallow backtracking; otherwise, it invokes deep backtracking.

fail:

if (younger(SB,DB)){
AR=SB; /* shallow backtracking x/
P = AR->CPF;
TOP = AR->TOP;

} else { /* deep backtracking */
AR = DB;
H = HB;
P = AR->CPF;

TOP = AR->TOP;
while (T > AR->T) unbind(--T);
}

Notice that since the H register is not saved and restored for shallow backtracking,
the data created by a guard become garbage after the guard fails. For this reason,
the specialization algorithm should not classify those calls as guard calls that
create data on the heap.

—commit, which corresponds to a : in a nonflat procedure, discards the latest
shallow choice point.

commit:
SB = AR->B;

——cut, which corresponds to a : in a nondeterminate procedure, discards the latest
deep choice point.

cut:
DB = AR->B;
HB = DB->H;

4.3.3 Ezample. Recall our motivating example. The instructions generated for
the canonical-form intersect procedure are listed in Figure 6. When the procedure
is invoked, the caller should have allocated a frame for it with the arguments,
the AR and CPS fields filled in. The allocate_nonflat instruction completes the
job of allocating a frame for the procedure and lets the frame to be the latest
shallow choice point. It also fills in the TOP slot such that the top of the control
stack can be restored after membchk(X,S2) in the guard fails. The switch_on_list
A1,C2,COM_FAIL is a conditional jump instruction that moves control to the next
instruction if A1 is a nil, to C2 if A1 is a list, otherwise to COM_FAIL, the label
of a commit instruction followed by a fail instruction. Each commit instruction
corresponds to a : choice operator in the procedure. The two arguments [X|Xs] in
the heads of the last two clauses are transformed into a test node in the matching
tree, and thus X and Xs are fetched only once for each call. The fork C3 instruction
sets the alternative program pointer. After membchk(X,52) fails, control will be
moved to C3. The return instruction reclaims the current frame before moving
control to the caller. The execute instructions correspond to the tail calls. The
current frame is reused by the tail calls.

ACM Transactions on Programming Languages and Systems, 1996

Parameter Passing and Control Stack Management for Prolog : 17

intersect/3:
allocate_nonflat 6
Cl:switch_on_list A1,C2,COM_FAIL

commit % intersect([],S82,83):-true :
assign_nil A3 % S3:=[].
return

C2:fetch_var Y1 % intersect([X[|Xs],S2,83):-
fetch_var Al
fork C3

para_value Y1

para_value A2

call membchk/2 % membchk(X,S2)

commit %

assign_list A3

build_value Y1

build_var A3 S3:=[X]Ys],

execute intersect/3 % intersect(Xs,S2,Ys).
C3:commit % true :

execute intersect/3 % intersect(Xs,S2,S3).

=

Fig. 6. ATOAM code for intersect.

5. STORAGE ALLOCATION

A variable is stored in either a register or a frame slot. This is decided by the
following four rules:

(1) Variables that are shared by more than one branch in a matching tree are stored
in frame slots. This rule is important for avoiding the components of shared
compound arguments being fetched many times. For example, the variables X
and Xs in the intersect procedure occur in the last two clauses and are thus
stored in frame slots.

(2) Variables occurring in more than one chunk are stored in frame slots. A chunk
is defined to be a noninline call in the guard or body of a clause to the left of
which there may exist a sequence of inline calls. The head of a clause is counted
into the first chunk. This rule may reduce data movement between registers
and frame slots. If a variable that occurs in more than one chunk is stored in a
register, then before the noninline call is executed, the register has to be saved
into the frame because the content of the register may be destroyed during the
execution of the noninline call.

(3) Variables occurring in only one chunk in only one branch in a matching tree
are stored in registers except when they occur as arquments in some tail calls.
This rule can be illustrated by using the following example:

p([alV]):-p(V).
Because V must be eventually placed in the frame, storing it in a register would

increase data movement.

(4) Frame slots and registers allocated to variables are reclaimed as early as possible
such that they can be reused to store other wvariables. This rule is important
for reducing data movement and for minimizing the size of frames and the

ACM Transactions on Programming Languages and Systems, 1996

18 : Neng-Fa Zhou

possibility of register overflow. A variable is said to be inactive if it cannot
be accessible in both forward or backward execution. The storage allocated
to a variable can be reclaimed immediately after the call in which the variable
becomes inactive.

The task of detecting the inactiveness of variables becomes difficult due to
aliasing. Consider, for example, the following clauses:

a:-b(U,V),c(0),dV,w),e(W),f.
b(V,V).

c().

d(a,W).

e(W) :-write(W).

Despite the calls b(U,V) and c(U) in the first clause being globally determinate,
the variable U is still active even after c(U) because V points to U, and V is still
active. If the frame slot allocated to U is reused to store W, then V and W would
be erroneously treated as the same variable.

The aliasing problem never occurs if all unbound variables are stored in the
heap. In B-Prolog, we modified the unification procedure to ensure that no
stack variable can reference another stack variable.

6. TAIL RECURSION ELIMINATION

Like in any other programming languages, programs in Prolog typically spend much
of their execution time in loops. In Prolog, loops are specified as recursive proce-
dures, most of which are tail recursive or can be transformed into tail-recursive ones
[Debray 1988]. The tail recursion optimization or last-call optimization technique
in the WAM enables tail calls to reuse the frame for the parent call if the frame lies
on top of the control stack.

Although, with tail recursion optimization, tail-recursive procedures consume
constant stack space, the WAM code is significantly slower than the counterpart in
procedural languages because frames have to be allocated and deallocated repeatly
in case the procedures are not binary. Meier [1991] has noticed the problem and
proposed a method for converting tail recursion into iteration in the WAM without
any modification of the WAM. Nevertheless, Meier’s method requires argument reg-
isters to be saved in an environment frame at the entry point of every tail-recursive
clause. The method would become very complicated if we want to implement the
tree compilation techniques that can merge test code shared by several clauses.
Meier has never implemented his method, though he has reported possible gains
obtainable by tail recursion elimination.

Recall the code shown in Figure 6. The code consumes constant stack space
because the frame of the parent call is reused by the tail calls. It is, however,
still unsatisfactory because the allocate instruction is executed repeatedly. The
execute instruction moves control to the entry point of the procedure. The first
instruction in the code for the procedure is an allocate instruction that allocates
a new frame that is of the same size and contains almost the same information as
the old one. Ideally, the frame should be allocated only once and be reused in the
loop repeatedly. In this section, we show how to achieve this.

ACM Transactions on Programming Languages and Systems, 1996

Parameter Passing and Control Stack Management for Prolog : 19

6.1 Flat Procedures

Let H:—G : By, ..., B, be a tail-recursive clause in a flat procedure. The ezecute
instruction for B,, can be safely replaced by a jump instruction. When H is a binary
determinate procedure, then the jump instruction jumps to the first instruction in
the code for the procedure; otherwise, it jumps to the instruction just below the
allocate instruction.

Consider the following procedure:

p([]) :-true : true.
p([X[Xs]) :-true : foo(X),p(Xs).

Suppose foo(X) is a globally determinate call. The generated code is

p/1l:allocate_flat 3

Cl: switch_on_list A1,C2,F
return

C2: fetch_var X1
fetch_var Al
para_value X1
call foo/1
jump C1

6.2 Nonflat Procedures

Let H:—G : By,..., B, be a tail-recursive clause in a nonflat procedure. There
should be a commit instruction generated for the : . Just like for flat tail-recursive
procedures, we replace the ezecute instruction for B, with a jump instruction
that jumps to the instruction just below the allocate instruction. If By,...,B,_1
never fail, then we also remove the commit instruction; otherwise, if some call
in By,...,B,_1 may fail, then we replace the commit instruction with a fork
COM_FAIL instruction where the COM_FAIL is the label of a commit instruction
followed by a fail instruction.

It is in general impossible to decide whether or not a call may fail. However,
many built-in procedures such as write/I do not fail. Using this information, the
compiler is able to decide that some user-defined procedures never fail.?

Figure 7 shows the code for the intersect procedure where tail-recursive calls
are converted into jumps. As there is no call to the left of the tail calls in the
tail-recursive clauses that may fail, the two commit instructions are removed.

6.3 Nondeterminate Procedures

Eliminating tail-recursive calls from nondeterminate procedures is a little compli-
cated. Consider a tail-recursive clause H:—G : By,...,B, in a nondeterminate
procedure. We eliminate the tail-recursive call as follows: replace the ezecute in-
struction for B, with a save_ht_jump L instruction where L is the label of the
instruction just below the allocate instruction. The save_ht_jump L saves the H and
T registers into the current frame and then jumps to L.

save_ht_jump L:

3The B-Prolog compiler does not do such analysis currently.

ACM Transactions on Programming Languages and Systems, 1996

20 : Neng-Fa Zhou

intersect/3:
allocate_nonflat 6
Cl:test_on_list A1,C2,COM_FAIL
commit
assign_nil A3
return
C2:fetch_var Y1
fetch_var A1l
fork C3
para_value Y1
para_value A2
call membchk/2
assign_list A3
build_value Y1
build_var A3
jump C1
C3:jump C1

Fig. 7. Optimized code for intersect.

AR->H = H;
HB = H;
AR->T = T;
DB = AR;
P=1L;

This instruction is simpler than the allocate_nondet instruction. It does not need
to set the TOP registers and the TOP slot in the frame. Nor does it need to do an
overflow check for the control stack.

Consider the following procedure:

member (X, [Y|Ys]) :-true ? X=Y.
member (X, [_|Ys]) :-true : member(X,Ys).

The generated code is

member/2:
allocate_nondet 8
Cl:switch_on_list A2,L,CUT_FAIL
jump CUT_FAIL % A2=[]
L: fetch_var Y1 % A2=[_1|_]
fetch_var A2
fork C2
unify_value Al,Y1
return
C2:cut
save_ht_jump C1

where CUT_FAIL is the label of a cut instruction followed by a fail instruction. The
tail recursion elimination technique for nondeterminate procedures is conservative
albeit safe. In many cases, a much more specific instruction than save_ht_jump
can be used. For example, in the code for member/2, the cut instruction can be

ACM Transactions on Programming Languages and Systems, 1996

Parameter Passing and Control Stack Management for Prolog : 21

removed, and the save ht_jump instruction can be replaced by a jump instruction.
These improvements have not yet been realized in the B-Prolog system.

7. PERFORMANCE EVALUATION

An ATOAM-emulator-based Prolog system called B-Prolog has been implemented.
Besides standard Prolog programs, the compiler can also compile canonical-form
programs. The compiler itself is written in canonical-form Prolog. To reduce the
overhead of interpretation by the emulator, we introduced some complex instruc-
tions each of which can encode a sequence of basic instructions. The implemented
abstract machine has 220 instructions in total.

In this section, we compare B-Prolog (version 2.0) with SICStus-Prolog (version
3.0), a well-tuned WAM-based commercial system developed by the Swedish Insti-
tute of Computer Science, and we report the following three sets of performance
data for the Aquarius benchmark suite [Van Roy 1995]: number of memory and
register references, CPU times, and stack space requirements. In the following, we
will refer to the two systems as BP and SP, respectively.

7.1 Number of Memory and Register References

To simplify the comparison, we concentrate on the references made to the control
stack? and temporary registers. Furthermore, we ignore the references made to
the stack by dereference, variable bind, and variable reset. Such a simplification
is reasonable because the numbers of memory references made by these operations
should be almost the same in both abstract machines.

For each instruction in the ATOAM, the number of stack references it makes is
equal to the number of Y operands, and likely the number of register references
is equal to the number of X operands, except when the instruction is a control or
a parameter-passing instruction. For each parameter-passing instruction, an addi-
tional stack reference is counted in because it manipulates the frame slot pointed
to by the TOP register. The numbers of memory references made by control instruc-
tions are shown in Table I. SP supports garbage collection, which requires local
variables to be initialized. To make the comparison fair, we modified the allocate
instructions such that local variables are initialized in the same way.

Table IT shows different ratios, where X, (Xsp) and Y, (Ysp) denote the numbers
of register references and stack references made by SP (BP). BP is better than SP
concerning the total number of stack and register references for all the programs ex-
cept for nreverse and flatten. nreverse is a typical program to which the WAM
is well suited, in which most of the execution time is spent on executing concat,
a binary procedure for concatenating two lists. The results demonstrate that most
programs do not have the same characteristics as nreverse. In emulator-based im-
plementations where the cost of accessing registers and that of accessing memory
is almost the same, the ATOAM is obviously better than the WAM. Furthermore,
the ATOAM would be no worse than the WAM for native code compilation on a
computer if accessing registers is less than four times as fast as accessing memory
in the computer.

4SP uses two separate stacks, namely, the environment stack and the choice point stack, to
represent the control stack.

ACM Transactions on Programming Languages and Systems, 1996

22 . Neng-Fa Zhou

Table I. Number of Memory References Made by Control Instructions

Instructions No. of Memory References
call q 2
execute q 0
allocate_flat N 1+(N-3)
allocate nonflat N 2+(N-5)
allocate_nondet N 4+(N-T7)
return 3
fork L 1
fail 3
commit 1
cut 2
jump_on_det L 0
save_ht_jump L 2

7.2 CPU Time

Table IIT shows the ratios of the CPU times taken by emulated SP to those taken
by BP. SP supports native code compilation and threaded code emulation, where a
jump table rather than a switch statement is used to perform control dispatches for
instruction interpretation. The compared system is installed with these extensions
excluded. Each program was run at least 10 times, and the mean value was taken.
The ratios depend to a large extent on the choices of computers and C compilers.
On a SPARC-2 with 64MB RAM, BP is on average 56% faster than SP if the
SUN CC compiler is used, and 20% faster than SP if the GCC compiler is used.
On a SPARC-10 with 96MB RAM, however, the ratios become 43% and 34%,
respectively.

Generally, the more a program refers to memory and registers, the more CPU
time it will take. For some programs such as tak and sendmore, this relationship is
clear. However, the factor of memory and register references can be overwhelmed
by some other factors, such as term representation method, instruction complexity,
memory management method, overflow-checking method, and programming style
in the real implementations. For example, for nreverse, although BP makes much
more memory references than SP, BP is even faster than SP for all the four runs.
This may result from two special instructions adopted in BP for handling lists.

Table IV compares the average performance between BP and different installa-
tions of SP.

7.3 Stack Space Requirements

Table V shows the ratios between various stack spaces required by SP to those
required by BP. The control stack space for tak is not given because SP consumes
6000 more stack space than BP, and thus including this data in the table would
render the mean value meaningless. The values at other entries marked with — are
not given either because BP consumes no space.

On average, BP consumes 30% more trail stack space than SP. The main reason
is that BP trails address-value pairs rather than only addresses as is done in SP.
The reason why BP consumes 14 times more space than SP for boyer is not clear.

ACM Transactions on Programming Languages and Systems, 1996

Parameter Passing and Control Stack Management for Prolog : 23

Table II. Comparison of the Numbers of Memory and Register References
‘ X.p ’ Yop ‘ X pFYep | XepT2XYep | XepF3XVap | XspFEXYep

Program

Xip Yop XpptYop XppF2X Vi Xpp+3X Yo XppF4X Yop
boyer 5.71 | 0.97 1.76 1.40 1.27 1.20
browse 4.37 | 0.94 1.59 1.30 1.19 1.13

chat_parser 24.46 | 0.75 1.45 1.11 0.99 0.93
crypt 2.56 | 0.27 1.00 0.70 0.58 0.51
derive 3.22 | 0.96 1.48 1.25 1.16 1.12
fast_mu 10.97 | 1.05 1.92 1.51 1.36 1.28
flatten 5.90 | 0.39 0.90 0.66 0.57 0.53

meta_gsort 5.52 | 0.72 1.10 0.92 0.86 0.82

mu 20.83 | 0.84 1.53 1.19 1.08 1.02
nand 14.66 | 1.01 1.73 1.38 1.26 1.20
nreverse 2.66 | 0.16 0.85 0.56 0.44 0.38
poly_10 3.46 | 0.87 1.46 1.20 1.10 1.05
prover 5.16 | 0.78 1.32 1.07 0.98 0.93
gsort 10.98 | 0.78 1.44 1.12 1.01 0.95

queens_8 8.48 | 0.35 1.18 0.79 0.64 0.57
query 5.44 | 0.62 1.37 1.02 0.90 0.83
reducer 5.53 | 0.82 1.40 1.13 1.03 0.98
sdda 7.36 | 0.79 1.33 1.08 0.98 0.94

sendmore 27.57 | 1.03 2.52 1.80 1.55 1.42
serialize 6.68 | 0.96 1.61 1.31 1.20 1.14

simple_analyzer 6.73 | 0.42 1.02 0.73 0.63 0.58
tak 9.22 | 1.14 2.02 1.61 1.46 1.38
unify 9.59 | 0.85 1.56 1.22 1.10 1.04
zebra 8.84 | 1.70 2.51 2.13 2.00 1.92
[(arithmetic mean) | 9.00 [0.80] 1.50 | 118] 1.07 | 0.99 |

For some programs, such as poly_10, BP uses less space than SP. This is due to
an optimization technique adopted in BP for reducing the number of trailings by
reordering unifications and cuts.

BP consumes 30% on average more control stack space than SP because of sev-
eral factors. First, ATOAM treats every procedure as a whole, and thus it has
to allocate a frame large enough for executing all the clauses in the procedure.
Second, for programs that require a very small number of frames, the ratios favor
the WAM because they do not take into account the space of the shadow frame
stored in registers. Third, the current implementation classifies each procedure as
either determinate or nondeterminate. It does not extract partial determinism, for
instance,

p(a):-B1.
p(a) :-B3.
p(b) :-B2.
p(c) :-B4.

B-Prolog treats this procedure as a nondeterminate procedure. The compiled code
creates a big frame even for those calls of the procedure whose first arguments are
b or c.

ACM Transactions on Programming Languages and Systems, 1996

24 . Neng-Fa Zhou

Table ITI. Comparison of CPU Times

Program SPARC-2 SPARC-10
% (cc -0) | %(gcc -03) % (cc -0) | % (gce -03)
boyer 1.61 1.31 1.39 1.30
browse 1.71 2.13 1.45 1.40
chat_parser 1.54 1.13 1.33 1.07
crypt 1.34 1.09 1.30 1.80
derive 1.07 0.97 1.35 0.93
fast_mu 1.43 1.13 1.29 1.29
flatten 1.41 0.94 1.05 1.29
meta_qgsort 1.27 0.83 0.97 0.82
mu 1.97 1.22 1.50 1.53
nand 1.82 1.48 1.75 1.62
nreverse 1.41 1.20 1.45 1.27
poly_10 1.38 1.25 1.31 1.19
prover 1.16 0.91 1.35 1.03
qsort 1.71 1.14 1.42 1.40
queens_8 1.97 1.11 1.84 1.28
query 1.24 0.90 1.20 1.80
reducer 1.61 1.10 1.29 1.15
sdda 1.47 1.19 1.31 1.20
sendmore 2.13 1.44 1.64 1.32
serialize 1.66 1.35 1.94 1.40
simple_analyzer 1.21 0.86 1.01 0.96
tak 2.11 1.73 1.88 1.89
unify 1.98 1.42 1.70 1.96
zebra 1.31 1.06 1.56 1.15
[(arithmetic mean) | 1.56 1.20 | 1.43 1.34

Table IV. Comparison of CPU Times of BP and Different Installations of SP (SP/BP)

SPARC-2 SPARC-10
emulator native emulator native
switch-cc | switch-gcc | threaded code switch-cc | switch-gcc | threaded code
[156 [120 [1.06 0.44 143 [134 [127 0.39

7.4 Good Canonical Form

The specialization algorithm adopted in B-Prolog suffers from several inefficiencies
as shown in Section 3.2. It can index clauses on only one argument, though not
necessarily the first one. Thus, a matching tree usually has only one level of test
nodes between the root and the leaves. If indexing is done only on the first argument
as is done in SP, then no slow-down occurs on average at all. The reason is that the
benchmark programs are written with the WAM’s first argument-indexing scheme

in mind.

To see what a good specialization algorithm can achieve, we translated several
benchmark programs into canonical form by hand and tested both their time and
space efficiencies. The results are very encouraging. For instance, for the boyer

ACM Transactions on Programming Languages and Systems, 1996

Parameter Passing and Control Stack Management for Prolog : 25

Table V. Comparison of Stack Space Requirements

Program %(Control) %(Global) | %(Trail) |
boyer 0.58 1.80 0.07
browse 0.86 1.00 0.80

chat_parser 0.97 1.00 0.51
crypt 0.84 1.00 2.00
derive 0.45 1.01 -

fast_mu 0.82 1.00 0.57
flatten 0.83 0.65 0.69

meta_gsort 0.46 1.13 0.84
mu 0.68 1.01 0.50
nand 0.85 0.95 0.49

nreverse 0.81 0.97 -

poly_10 0.54 0.82 3.57
prover 0.83 0.81 0.65
gsort 0.72 1.00 0.50

queens_8 0.67 1.00 0.50
query 0.80 1.12 0.50
reducer 0.20 1.00 0.37
sdda 0.82 0.97 0.76

sendmore 0.79 - 0.50
serialize 0.73 1.01 0.50

simple_analyzer 2.16 0.60 0.78
tak - - -
unify 0.46 0.87 0.19
zebra 0.80 0.92 0.50
| (arithmetic mean) | 0.77 | 0.99 | 0.75 |

program, the hand-translated canonical form is 31% faster, takes 70% less code
area, and consumes 170 % less control stack space than the compiler-translated
canonical form. The hand-translated canonical form does not touch the trail stack
because all the procedures are determinate.

8. RELATED WORK

The scheme of handling procedure calls described in this article is similar to that
adopted for handling procedure calls in conventional compilers of procedural lan-
guages [Aho et al. 1986]. Similar schemes had been adopted in early Prolog imple-
mentations [Campbell 1984; Clark and Tarnlund 1982]. In the abstract machine
[Warren 1977], only one frame that is big enough for holding information for both
forward execution and backtracking was used for each procedure call. After War-
ren invented the WAM, people shifted their attention from this old scheme to the
WAM.
Compared with the WAM, the ATOAM has the following advantages:

(1) Backtracking in the ATOAM is much simpler than that in the WAM because no
argument registers need be saved and restored. In addition, shallow backtrack-
ing is treated more efficiently than deep backtracking because less bookkeeping
registers need be saved and restored, and the trail stack need not be touched
when a guard, whether inline or not, fails.

ACM Transactions on Programming Languages and Systems, 1996

26 : Neng-Fa Zhou

(2) In the ATOAM, the tail calls in a procedure can reuse both the space of and the
information in the frame for the procedure if the frame can be reused. If the
tail calls recursively call the procedure itself, the frame needs not be allocated
and deallocated repeatedly. In contrary, in the WAM, although the first calls
in the bodies can reuse some argument registers, no information in a control
stack frame can be reused. ATOAM can surplus the WAM a lot in speed for
tail-recursive procedures that are not binary, such as the intersect procedure.

(3) One advantage of the ATOAM, which has not yet been addressed by now, is
that the delay mechanism can be implemented efficiently [Zhou 1996]. Just
like for backtracking, data movements between the heap and registers can be
eliminated for delay if arguments are passed in the stack.

(4) In an emulator-based implementation, the destination to which the next argu-
ment is to be passed is stored in the TOP register, and the emulator does not
need to fetch and interpret it.

The ATOAM has the following disadvantages:

(1) The ATOAM is inefficient for executing binary determinate programs for which
no memory access is required in the WAM. This problem is not so severe in an
emulator-based system because the difference between the costs of accessing a
register and accessing a frame slot is not so big. However, for a native compiler,
this demerit may result in a big slow down compared with the WAM.

(2) The ATOAM may require a little more control stack space than the WAM. In
the original WAM, clauses are assumed to be compiled separately. In contrast
to that, a procedure is compiled as a whole in the ATOAM. Thus, a frame that
is large enough for executing all the clauses in a procedure has to be allocated
in the ATOAM. In addition, the frame-trimming technique in the WAM can
trim frames dynamically without checking determinacy of procedures, but such
a thing is impossible in the ATOAM. The ATOAM compiler does do a kind of
frame trimming at compilation time, but it achieves almost nothing if no infor-
mation about the determinacy of procedure calls is available. Let us consider
the following clause:

a:_b(A) ,C(A:B) :d(B:C) ,e(c) :f(B) .

If the procedure calls b(A) and c(A,B) are known to be determinate, then
the frame slot taken by the variable A can be reallocated to C. However, if
the compiler does not know any information about the determinacy, it has to
allocate a new slot to C. Furthermore, the code for the tail call is duplicated.

Most of the previous research on Prolog implementation has been focused on
inferring run-time information about variables and has used such information to
specialize unification [Van Roy 1990], achieve multilevel clause indexing [Hickey
and Mudambi 1989; Zhou 1993], optimize determinate procedures [Hickey and Mu-
dambi 1989; Van Roy 1990; Zhou 1993], and remove redundant trailing checks and
dereferences [Taylor 1989; Van Roy 1990]. Several variants of the WAM have been
proposed. Tarau [1991] proposed a simplified WAM that is efficient for executing
binary programs. The separate-stack WAM [Marien and Demoen 1990] splits the
local stack of the WAM into two: one for holding environments and the other for

ACM Transactions on Programming Languages and Systems, 1996

Parameter Passing and Control Stack Management for Prolog : 27

holding choice points. The VAM [Krall and Berger 1995], which aims at eliminat-
ing the argument-passing bottleneck of the WAM, combines the code for argument
passing and that for head unification. Nevertheless, the inefficiencies of the WAM
mentioned in the Introduction remain in these variants. In reality, no system based
on these variants can significantly beat the fastest WAM-based systems without
global program analysis.

9. FURTHER WORK

There are many alternatives to consider when deciding how arguments are passed
and how frames are structured. The WAM lies at one extreme in the spectrum,
where not only arguments but also the return address of every call are passed
through registers. The ATOAM lies at the other extreme, in which anything is
passed into the stack. An optimal choice might lie in the middle of the spectrum
rather than at the extremes. Saumya K. Debray suggested to the author in 1993
a hybrid scheme in which some procedures have their arguments passed in the
stack and in which other procedures have their arguments passed in argument
registers. This decision should be made based on two factors, i.e., implementation
environment and characteristics of programs. It is a further work to establish such
a criterion.

Another further work, which is not unrelevant to the decision on argument pass-
ing, is to develop a good specialization algorithm that can translate Prolog pro-
grams into efficient canonical-form programs. Such an algorithm must be able to
infer modes and detect determinacy of procedures. It must also be able to identify
deep guards.

ACKNOWLEDGMENTS

Preliminary ideas and results of this article have been published in Zhou [1994]. I
would like to thank Isao Nagasawa for his encouragement, Bart Demoen, Saumya,
K. Debray, Manuel Hermenegildo, and Paul Tarau for constructive comments, Mats
Carlsson for suggesting to me to measure the numbers of memory references, and
kindly answering my questions about how to get these data from SICStus-Prolog,
and the anonymous referees for helpful comments on the presentation.

REFERENCES

AHO, A., SETHI, R., AND ULLMAN, J. 1986. Compilers — Principles, Techniques, and Tools.
Addison-Wesley, Reading, Mass.

Arr-Kaci, H. 1991. Warren’s Abstract Machine. MIT Press, Cambridge, Mass.

CAMPBELL, J. 1984. Implementations of Prolog. Ellis Horwood Chichester, U.K.

CARLSSON, M. 1990. Design and implementation of an or-parallel prolog engine. Ph.D. thesis,
S-16428, Swedish Institute of Computer Science, Kista, Sweden.

CLARK, K. AND TARNLUND, S. 1982. Logic Programming. Academic Press, New York.

DEBRAY, S. 1988. Unfold/fold transformations and loop optimizations of logic programs. In Pro-
ceedings of the SIGPLAN Conference on Programming Language Design and Implementation.
ACM Press, New York, 297-307.

Hickey, T. AND MuDAMBI, S. 1989. Global compilation of prolog. J. Logic Program. 7, 3, 193-230.

KraLL, A. AND BERGER, T. 1995. Incremental global compilation of prolog with the vienna
abstract machine. In Proceedings the 12th International Conference on Logic Programming.

MIT Press, Cambridge, Mass., 333-347.

ACM Transactions on Programming Languages and Systems, 1996

28 : Neng-Fa Zhou

MARIEN, A. AND DEMOEN, B. 1990. On the management of choice point and environment frames
in the wam. In Proceedings of the North American Conference on Logic Programming. MIT
Press, Cambridge, Mass., 1030-1047.

MEIER, M. 1991. Recursion vs. iteration in prolog. In Proceedings of the 8th International
Conference on Logic Programming. MIT Press, Cambridge, Mass., 156-169.

Tarau, P. 1991. A simplified abstract machine for the execution of binary metaprograms. In
Proceedings of the Logic Programming Conference. ICOT, Tokyo, Japan, 119-128.

TAYLOR, A. 1989. Removal of dereferencing and trailing in prolog compilation. In Proceedings of
the 6th International Conference on Logic Programming. MIT Press, Cambridge, Mass., 48—60.

UepaA, K. AND CHikAYAMA, T. 1990. Design of the kernel language for the parallel inference
machine. Comput. J. 83, 494-500.

VAN Roy, P. 1990. Can logic programming executes as fast as imperative programming? Ph.D.
thesis, Dept. of Computer Science, Univ. of California, Berkeley, Calif.

VAN Roy, P. 1994. 1983-1993: The wonder years of sequential prolog implementation. J. Logic
Program. 19, 385-441.

VanN Roy, P. 1995. Aquarius benchmarks. Awailable by anonymous ftp from gatekeeper.dec.com
in pub/plan/prolog/AquariusBenchmarks.tar.Z.

WARREN, D. 1977. Implementing prolog-compiling predicate logic programs. Ph.D. thesis, Dept.
of Artificial Intelligence, Univ. of Edinburgh, Edinburgh, U.K.

WARREN, D. 1983. An abstract Prolog instruction set. Tech. Rep., SRI International, Menlo Park,
Calif.

Zuou, N. 1993. Global optimizations in a prolog compiler for the toam. J. Logic Program. 15,
265-294.

ZHOU, N. 1994. On the scheme of passing arguments in stack frames for prolog. In Proceedings
of the 11th International Conference on Logic Programming. MIT Press, Cambridge, Mass.,
159-174.

ZHOU, N. 1996. A novel implementation method for delay. In Proceedings of the Joint International
Conference and Symposium on Logic Programming. MIT Press, Cambridge, Mass., 97-111.

Received September 1995; revised February and May 1996; accepted June 1996

ACM Transactions on Programming Languages and Systems, 1996

