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Abstract

Recently there has been a growing interest of research in tabling in the logic programming
community because of its usefulness in a variety of application domains including program
analysis, parsing, deductive databases, theorem proving, model checking, and logic-based
probabilistic learning. The main idea of tabling is to memorize the answers to some sub-
goals and use the answers to resolve subsequent variant subgoals. Early resolution mech-
anisms proposed for tabling such as OLDT and SLG rely on suspension and resumption
of subgoals to compute fixpoints. Recently, the iterative approach named linear tabling
has received considerable attention because of its simplicity, ease of implementation, and
good space efficiency. Linear tabling is a framework from which different methods can be
derived based on the strategies used in handling looping subgoals. One decision concerns
when answers are consumed and returned. This paper describes two strategies, namely,
lazy and eager strategies, and compares them both qualitatively and quantitatively. The
results indicate that, while the lazy strategy has good locality and is well suited for find-
ing all solutions, the eager strategy is comparable in speed with the lazy strategy and is
well suited for programs with cuts. Linear tabling relies on depth-first iterative deepening
rather than suspension to compute fixpoints. Each cluster of inter-dependent subgoals as
represented by a top-most looping subgoal is iteratively evaluated until no subgoal in it
can produce any new answers. Naive re-evaluation of all looping subgoals, albeit simple,
may be computationally unacceptable. In this paper, we also introduce semi-naive opti-
mization, an effective technique employed in bottom-up evaluation of logic programs to
avoid redundant joins of answers, into linear tabling. We give the conditions for the tech-
nique to be safe (i.e. sound and complete) and propose an optimization technique called
early answer promotion to enhance its effectiveness. Benchmarking in B-Prolog demon-
strates that with this optimization linear tabling compares favorably well in speed with
the state-of-the-art implementation of SLG.

KEYWORDS: Prolog, Semi-naive evaluation, Recursion, Tabling, Memoization, Linear
tabling.



2 N.F. Zhou, T. Sato, and Y.D. Shen

1 Introduction

The SLD resolution used in Prolog may not be complete or efficient for programs

in the presence of recursion. For example, for a recursive definition of the transitive

closure of a relation, a query may never terminate under SLD resolution if the pro-

gram contains left-recursion or the graph represented by the relation contains cycles

even if no rule is left-recursive. For a natural definition of the Fibonacci function,

the evaluation of a subgoal under SLD resolution spawns an exponential number

of subgoals, many of which are variants. The lack of completeness and efficiency in

evaluating recursive programs is problematic: novice programmers may lose confi-

dence in writing declarative programs that terminate and real programmers have to

reformulate a natural and declarative formulation to avoid these problems, resulting

in cluttered programs.

Tabling (Tamaki and Sato 1986; Warren 1992) is a technique that can get rid of

infinite loops for bounded-term-size programs and redundant computations in the

execution of recursive programs. The main idea of tabling is to memorize the an-

swers to subgoals and use the answers to resolve their variant descendents. Tabling

helps narrow the gap between declarative and procedural readings of logic pro-

grams. It not only is useful in the problem domains that motivated its birth, such

as program analysis (Dawson et al. 1996), parsing (Eisner et al. 2004; Johnson 1995;

Warren 1999), deductive databases (Liu 1999; Ramakrishnan and Ullman 1995; Sag-

onas et al. 1994), and theorem proving (Nielson et al. 2004; Pientka 2003), but also

has been found essential in several other problem domains such as model check-

ing (Ramakrishnan 2002) and logic-based probabilistic learning(Sato and Kameya

2001; Zhou et al. 2003). This idea of caching previously calculated solutions, called

memoization, was first used to speed up the evaluation of functions (Michie 1968).

OLDT (Tamaki and Sato 1986) is the first resolution mechanism that accommo-

dates the idea of tabling in logic programming and XSB is the first Prolog system

that successfully supports tabling (Sagonas and Swift 1998). Tabling has become a

practical technique thanks to the availability of large amounts of memory in com-

puters. It has become an embedded feature in a number of other logic programming

systems such as B-Prolog (Zhou et al. 2000; Zhou et al. 2004), Mercury (Somogyi

and Sagonas 2006), TALS (Guo and Gupta 2001), and YAP (Rocha et al. 2005b).

OLDT, and SLG (Chen and Warren 1996) alike, is non-linear in the sense that the

state of a consumer must be preserved before execution backtracks to its producer.

This non-linearity requires freezing stack segments (Sagonas and Swift 1998) or

copying stack segments into a different area (Demoen and Sagonas 1999) before

backtracking takes place. Linear tabling is an alternative tabling scheme (Shen

et al. 2001; Zhou et al. 2000; Zhou and Sato 2003; Zhou et al. 2004). The main

idea of linear tabling is to use iterative computation of looping subgoals rather

than suspension and resumption of them as is done in OLDT to compute fixpoints.

This basic idea dates back to the ET* algorithm (Dietrich 1987). The DRA method

proposed in (Guo and Gupta 2001) is based on the same idea but employs different

strategies for handling looping subgoals and clauses. In linear tabling, a cluster of

inter-dependent subgoals as represented by a top-most looping subgoal is iteratively
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evaluated until no subgoal in it can produce any new answers. Linear tabling is

relatively easy to implement on top of a stack machine thanks to its linearity,

and is more space efficient than OLDT since the states of subgoals need not be

preserved.

Linear tabling is a framework from which different methods can be derived based

on the strategies used in handling looping subgoals. One decision concerns when

answers are consumed and returned. The lazy strategy postpones the consumption

of answers until no answers can be produced. It is in general space efficient because

of its locality and is well suited for all-solution search programs. The eager strategy,

in contrast, prefers answer consumption and return over production. It is well suited

for programs with cuts. These two strategies have been compared in SLG-WAM

as two scheduling strategies called local and single-stack (Freire et al. 1998). This

paper gives a comprehensive analysis of these two strategies and compares their

performance experimentally.

Linear tabling relies on iterative evaluation of top-most looping subgoals to com-

pute fixpoints. Naive re-evaluation of all looping subgoals may be computationally

expensive. Semi-naive optimization is an effective technique used in bottom-up eval-

uation of Datalog programs (Bancilhon and Ramakrishnan 1986; Ullman 1988). It

avoids redundant joins by ensuring that the join of the subgoals in the body of

each rule must involve at least one new answer produced in the previous round.

The impact of semi-naive optimization on top-down evaluation had been unknown

before (Zhou et al. 2004). In this paper, we also propose to introduce semi-naive

optimization into linear tabling. We have made efforts to properly tailor semi-naive

optimization to linear tabling. In our semi-naive optimization, answers for each

tabled subgoal are divided into three regions as in bottom-up evaluation, but an-

swers are consumed sequentially until exhaustion not incrementally as in bottom-up

evaluation so that answers produced in a round are consumed in the same round.

We have found that incremental consumption of answers does not fit linear tabling

since it may require more iterations to reach fixpoints. Moreover, consuming answers

incrementally may cause redundant consumption of answers. We further propose a

technique called early promotion of answers to reduce redundant consumption of

answers. Our benchmarking shows that this technique gives significant speed-ups

to some programs.

An efficient tabling system has been implemented in B-Prolog,1 in which the

lazy strategy is employed by default but the eager strategy can be used through

declarations for subgoals that are in the scopes of cuts or are not required to return

all the answers. Our tabling system not only consumes considerably less stack space

than XSB for some programs but also compares favorably well in speed with XSB.

The theoretical framework of linear tabling is given in (Shen et al. 2001). The

main objective of this paper is to propose evaluation strategies and their optimiza-

tions for linear tabling. The remainder of the paper is structured as follows: In the

next section we define the terms used in this paper. In Section 3 we give the linear

1 www.bprolog.com
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tabling framework and the two answer consumption strategies. In Section 4 we in-

troduce semi-naive optimization into linear tabling and prove its completeness. In

Section 5 we describe the implementation of our tabling system and also show how

to implement semi-naive optimization. In Section 6 we compare the tabling strate-

gies experimentally, evaluate the effectiveness of semi-naive optimization, and also

compare the performance of B-Prolog with XSB. In Section 7 we survey the related

work and in Section 8 we conclude the paper.

2 Preliminaries

In this section we give the definitions of the terms to make this paper as much self-

contained as possible. The reader is referred to (Lloyd 1988) for a description of

SLD resolution. In this paper, we always assume the top-down strategy for selecting

clauses and the left-to-right computation rule.

Let P be a program. Tabled predicates in P are explicitly declared and all the

other predicates are assumed to be non-tabled. A subgoal of a tabled predicate is

called a tabled subgoal. Tabled predicates are transformed into a form that facilitates

execution: each rule ends with a dummy subgoal named memo(H) where H is the

head, and each tabled predicate contains a dummy ending rule whose body contains

only one subgoal named check completion(H). For example, given the definition of

the transitive closure of a relation,

:-table p/2.

p(X,Y):-p(X,Z),e(Z,Y).

p(X,Y):-e(X,Y).

The transformed predicate is as follows:

p(X,Y):-p(X,Z),e(Z,Y),memo(p(X,Y)).

p(X,Y):-e(X,Y),memo(p(X,Y)).

p(X,Y):-check_completion(p(X,Y)).

A table is used to record subgoals and their answers. For each subgoal and its

variants, there is an entry in the table that stores the state of the subgoal (e.g.,

complete or not) and an answer table for holding the answers generated for the

subgoal. Initially, the answer table is empty.

Definition 1
Let t1 and t2 be two terms with no shared variables. The term t1 subsumes t2 if

there exists a substitution θ such that t1θ=t2. The two terms t1 and t2 are called

variants if they subsume each other.

Definition 2
Let G = (A1, A2, ..., Ak) be a goal. The first subgoal A1 is called the selected subgoal

of the goal. G′ is derived from G by using a tabled answer F if there exists a unifier

θ such that A1θ = F and G′ = (A2, ..., Ak)θ. G′ is derived from G by using a rule

“H : −B1, ..., Bm” if A1θ = Hθ and G′ = (B1, ..., Bm, A2, ..., Ak)θ. A1 is said to be

the parent of B1, ..., and Bm. The relation ancestor is defined recursively from the

parent relation.
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Fig. 1. A top-most looping subgoal.

Definition 3

A tabled subgoal that occurs first in the construction of an SLD tree is called a

pioneer, and all subsequent variants are called followers of the pioneer. Let G0 be

a given goal, and G0 ⇒ G1 ⇒ . . . ⇒ Gn be a derivation where each goal is derived

from the goal immediately preceding it. Let Gi ⇒ . . . ⇒ Gj be a sub-sequence

of the derivation where Gi = (A...) and Gj = (A′...). The sub-sequence forms a

loop if A and A′ are variants. The subgoals A and A′ are called looping subgoals.

In particular, A is called the pioneer looping subgoal and A′ is called the follower

looping subgoal of the loop.

Notice that the pioneer and follower looping subgoals are not required to have the

ancestor-descendent relationship, and thus a derivation that contains two variant

subgoals may not be a real loop. Consider, for example, the goal “p(X), p(Y )”

where p is defined by facts. The derivation “p(X), p(Y )” ⇒ p(Y ) is treated as a

loop although the selected subgoal p(Y ) in the second goal is not a descendant of

p(X).

Definition 4

A subgoal A is said to be dependent on another subgoal A′ if A′ occurs in a derived

goal from A, i.e., A ⇒ . . . ⇒ (A′...). Two subgoals are said to be inter-dependent

if they are dependent on each other. Inter-dependent subgoals constitute a cluster,

which is called a strongly connected component elsewhere (Sagonas and Swift 1998).

A subgoal in a cluster is called the top-most subgoal of the cluster if none of its

ancestors is included in the cluster.

Unless a cluster contains only a single subgoal, its top-most subgoal must also

be a looping subgoal. For example, the subgoals at the nodes in the SLD tree in

Figure 1 constitute a cluster and the subgoal p at node 1 is the top-most looping

subgoal of the cluster.
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3 Linear Tabling and Answer Consumption Strategies

Linear tabling takes a transformed program and a goal, and tries to find a path

in the SLD tree that leads to an empty goal. The primitive table start(A) is ex-

ecuted when a tabled subgoal A is encountered. Just as in SLD resolution, linear

tabling explores the SLD tree in a depth-first fashion, taking special actions when

table start(A), memo(A), and check completion(A) are encountered. Backtracking

is done in exactly the same way as in SLD resolution. When the current path

reaches a dead end, meaning that no action can be taken on the selected subgoal,

execution backtracks to the latest previous goal in the path and continues with an

alternative branch. When execution backtracks to the top-most looping subgoal of

a cluster, however, we cannot fail the subgoal even after all the alternative clauses

have been tried. In general, the evaluation of a top-most looping subgoal must be

iterated until its fixpoint is reached. We call each iteration of a top-most looping

subgoal a round.

Various linear tabling methods can be devised based on the framework. A linear

tabling method comprises strategies used in the three primitives: table start(A),

memo(A), and check completion(A). In linear tabling, a pioneer subgoal has two

roles: one is to produce answers into the table and the other is to return answers

to its parent through its variables. Different strategies can be used to produce and

return answers. The lazy strategy gives priority to answer production and the eager

strategy prefers answer consumption over production. In the following we define the

three primitives in both strategies.

3.1 The lazy strategy

The lazy strategy postpones the consumption of answers until no answers can be

produced. In concrete, for top-most looping subgoals no answer is returned until

they are complete, and for other pioneer subgoals answers are consumed only after

all the rules have been tried.

3.1.1 table start(A)

This primitive is executed when a tabled subgoal A is encountered. The subgoal

A is registered into the table if it is not registered yet. If A’s state is complete

meaning that A has been completely evaluated before, then A is resolved by using

the answers in the table.

If A is a pioneer, meaning that it is encountered for the first time in the current

path, then different actions are taken depending on A’s state. If A’s state is evaluated

meaning that A has occurred before in a different path during the current round,

then it is resolved by using answers. Otherwise, if A has never occurred before during

the current round, it is resolved by using rules. In this way, a pioneer subgoal needs

to be evaluated only once in each round.

If A is a follower of some ancestor A0, meaning that a loop has been encountered,2

2 As to be discussed later, A0 must be an ancestor of A under the lazy strategy.
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then it is resolved by using the answers in the table. After the answers are exhausted,

A fails. Failing A is unsafe in general since it may have not returned all of its possible

answers. For this reason, the top-most looping subgoal of the cluster of A needs be

iterated until no new answer can be produced.

3.1.2 memo(A)

This primitive is executed when an answer is found for the tabled subgoal A. If the

answer A is already in the table, then just fail; otherwise fail after the answer is

added into the table. The failure of memo postpones the return of answers until all

rules have been tried.

3.1.3 check completion(A)

This primitive is executed when the subgoal A is being resolved by using rules and

the dummy ending rule is being tried. If A has never occurred in a loop, then A’s

state is set to complete and A is failed after all the answers are consumed.

If A is a top-most looping subgoal, we check if any new answers are produced

during the last iteration of the cluster under A. If so, A is re-evaluated by calling

table start(A) after all the dependent subgoals’s states are initialized. Otherwise,

if no new answer is produced, A is resolved by using answers after its state and all

its dependent subgoals’ states are set to complete. Notice that a top-most looping

subgoal does not return any answers until it is complete.

If A is a looping subgoal but not a top-most one, A will be resolved by using

answers after its state is set to evaluated. Notice that A’s state cannot be set

to complete since A is contained in a loop whose top-most subgoal has not been

completely evaluated. For example, in Figure 1, q reaches its fixpoint only after the

top-most looping subgoal p reaches its fixpoint.

As described in the definition of table start(A), an evaluated subgoal is never

evaluated using rules again in the same round. This optimization is called subgoal

optimization in (Zhou and Sato 2003). If evaluating a subgoal produces some new

answers then the top-most looping subgoal will be re-evaluated and so will the sub-

goal; and if evaluating a subgoal does not produce any new answer, then evaluating

it again in the same round would not produce any new answers either. Therefore,

the subgoal optimization is safe.

3.1.4 Example

Consider the following program, where p/2 is tabled, and the query p(a,Y0).

p(X,Y):-p(X,Z),e(Z,Y),memo(p(X,Y)). (p1)

p(X,Y):-e(X,Y),memo(p(X,Y)). (p2)

p(X,Y):-check_completion(p(X,Y)). (p3)

e(a,b).

e(b,c).
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The following shows the steps that lead to the production of the first answer:

1: p(a,Y0)

⇓apply p1

2: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

loop found, backtrack to goal 1

1: p(a,Y0)

⇓ apply p2

3: e(a,Y0),memo(p(a,Y0))

⇓ apply e(a,b)

4: memo(p(a,b))

⇓ add answer p(a,b)

After the answer p(a,b) is added into the table, memo(p(a,b)) fails. The failure

forces execution to backtrack to p(a,Y0).

1: p(a,Y0)

⇓ apply p3

5: check completion(p(a,Y0))

Since p(a,Y0) is a top-most looping subgoal which has not been completely evalu-

ated yet, check completion(p(a,Y0)) does not consume the answer in the table

but instead starts re-evaluation of the subgoal.

1: p(a,Y0)

⇓apply p1

6: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

⇓use answer p(a,b)

7: e(b,Y0),memo(p(a,Y0))

⇓apply e(b,c)

8: memo(p(a,c))

When the follower p(a,Z1) is encountered this time, it consumes the answer p(a,b).

The current path leads to the second answer p(a,c). On backtracking, the goal

numbered 6 becomes the current goal.

6: p(a,Z1),e(Z1,Y0),memo(p(a,Y0))

⇓use answer p(a,c)

9: e(c,Y0),memo(p(a,Y0))

Goal 9 fails. Execution backtracks to the top goal and tries the clause p3 on it.

1: p(a,Y0)

⇓ apply p3

10: check completion(p(a,Y0))

Since the new answer p(a,c) is produced in the last round, the top-most looping

subgoal p(a,Y0) needs to be evaluated again. The next round produces no new

answer and thus the subgoal’s state is set to complete. After that the top-most

subgoal returns the answers p(a,b) and p(a,c).
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3.1.5 Properties of the lazy strategy

Under the lazy strategy, answers are not returned immediately after they are pro-

duced but are returned via the table after all clauses are tried. No answer is returned

for a top-most looping subgoal until the subgoal is complete.

All loops are guaranteed to be real: for any loop Gi = (A . . .) ⇒ . . . ⇒ Gj =

(A′ . . .) where A and A′ are variants, A must be an ancestor of A′. Because each

cluster of inter-dependent subgoals is completely evaluated before any answers are

returned to outside of the cluster, the lazy strategy has good locality and is thus

suited for finding all solutions. For example, when the subgoal p(Y ) is encountered

in the goal “p(X),p(Y)”, the subtree for p(X) must have been explored completely

and thus needs not be saved for evaluating p(Y).

The cut operator cannot be handled efficiently under the lazy strategy. The goal

“p(X), !, q(X)” produces all the answers for p(X) even though only one is needed.

3.2 The eager strategy

The eager strategy prefers answer consumption and return over production. For a

pioneer, answers are used first and rules are used only after all available answers

are exhausted, and moreover a new answer is returned to its parent immediately

after it is added into the table. The following describes how the three primitives

behave under the eager strategy.

3.2.1 table start(A)

Just as in the lazy strategy, A is registered if it is not registered yet. A is resolved by

using the tabled answers if A is complete or A is a follower of some former variant

subgoal. If A is a pioneer, being encountered for the first time in the current round,

it is resolved by using answers first, and then rules after all existing answers are

exhausted.

3.2.2 memo(A)

If the answer A is already in the table, then this primitive fails; otherwise, this

primitive succeeds after adding the answer A into the table. Notice that A is re-

turned immediately after it is added into the table. If A is not new, then it must

have been returned before.

3.2.3 check completion(A)

If A is a top-most looping subgoal, just as in the lazy strategy, we check whether

any new answers are produced during the last iteration of A. If so, A is eval-

uated again by calling table start(A). Otherwise, if no new answer is produced,

this primitive fails after A’s and all its dependent subgoals’ states are set to com-

plete. If A is a looping subgoal but not a top-most one, this primitive fails after

A’s state is set to evaluated. An evaluated subgoal is never evaluated using rules
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again in the same round. Notice that unlike under the lazy strategy, the primitive

check completion(A) never returns any answers under the eager strategy. As de-

scribed above, all the available answers must have been returned by table start(A)

and memo(A) by the time check completion(A) is executed.

3.2.4 Example

Because of the need to re-evaluate a top-most looping subgoal, redundant solutions

may be observed for a query. Consider, for example, the following program and the

query “p(X),p(Y)”.

p(1):-memo(p(1)). (r1)

p(2):-memo(p(2)). (r2)

p(X):-check_completion(p(X)). (r3)

The following derivation steps lead to the return of the first solution (1,1) for

(X,Y).

1: p(X),p(Y)

⇓ use r1

2: memo(p(1)),p(Y)

⇓ add answer p(1)

3: p(Y)

⇓ loop found, use answer p(1)

When the subgoal p(Y) is encountered, it is treated as a follower and is resolved

using the tabled answer p(1). After that the first solution (1,1) is returned to the

top query. When execution backtracks to p(Y), it fails since it is a follower and no

more answer is available in the table. Execution backtracks to p(X), which produces

and adds the second answer p(2) into the table.

1: p(X),p(Y)

⇓ use r2

4: memo(p(2)),p(Y)

⇓ add answer p(2)

5: p(Y)

⇓ use answer p(1)

When p(Y) is encountered this time, there are two answers p(1) and p(2) in the

table. So the next two solutions returned are (2,1) and (2,2). When execution

backtracks to goal 1, the dummy ending rule is applied.

1: p(X),p(Y)

⇓ use r3

6: check completion(p(X)),p(Y)
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Since new answers are added into the table during this round, the subgoal p(X)

needs to be evaluated again, first using answers and then using rules. The second

round produces no answer but returns the four solutions (1,1), (1,2), (2,1) and

(2,2) among which only (1,2) has not been observed before.

3.2.5 Properties of the eager strategy

Since answers are returned eagerly, a pioneer and a follower may not have an

ancestor-descendant relationship. Because of the existence of this kind of fake loops

and the necessity of iterating the evaluation of top-most looping subgoals, redun-

dant solutions may be observed. In the previous example, the solutions (1,1),

(2,1) and (2,2) are each observed twice. Provided that the top-most looping sub-

goal p(X) did not return the answer p(1) again in the second round, the solution

(1,2) would have been lost.

The eager strategy is more suited than the lazy strategy for single-solution search.

For certain applications such as planning it is unreasonable to find all answers

either because the set is infinite or because only one answer is needed. For these

applications the eager strategy is more effective than the lazy one. Cuts are handled

more efficiently under the eager strategy.

4 Semi-naive Optimization

The basic linear tabling framework described in the previous section does not dis-

tinguish between new and old answers. The problem with this naive method is

that it redundantly joins answers of subgoals that have been joined in early rounds.

Semi-naive optimization (Ullman 1988) reduces the redundancy by ensuring that at

least one new answer is involved in the join of the answers for each rule. In this sec-

tion, we introduce semi-naive optimization into linear tabling and identify sufficient

conditions for it to be complete. We also propose a technique called early answer

promotion to further avoid redundant consumption of answers. This optimization

works with both the lazy and eager strategies.

4.1 Preparation

To make semi-naive optimization possible, we divide the answer table for each

tabled subgoal into three regions:

old previous current

The names of the regions indicate the rounds during which the answers in the

regions are produced: old means that the answers were produced before the previous

round, previous the answers produced during the previous round, and current the

answers produced in the current round. The answers stored in previous and current

are said to be new. Before each round is started, answers are promoted accordingly:

previous answers become old and current answers become previous.
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In our optimization, answers are consumed sequentially. For a subgoal, either all

the available answers or only new answers are consumed. This is unlike in bottom-

up evaluation where answers are consumed incrementally, i.e., answers produced

in a round are not consumed until the next round. As will be discussed later,

incremental consumption of answers as is done in bottom-up evaluation does avoid

certain redundant joins but does not fit linear tabling since it may require more

rounds to reach fixpoints.

A predicate p calls a predicate q if: (1) if q occurs in the body of at least one rule

in the definition of p (p calls q directly); or (2) q does not occur in the body of any

rule in the definition of p but there exists a predicate in the body of a rule in the

definition of p that calls q (p calls q indirectly). The calling relationship constitutes

a graph called a call graph.

For a given program, we find a level mapping from the predicate symbols in the

program to the set of integers to represent the call graph of the program. Let m be

a level mapping. We extend the notation to assume that m(p(. . .)) = m(p/n) for

any subgoal p(. . .) of arity n.

Definition 5

For a given program, a level mapping m represents the call graph if: for each rule

“H :−A1, ..., An” in the program, m(H) > m(Ai) iff the predicate of Ai does not

call (either directly or indirectly) the predicate of H , and m(H) = m(Ai) iff the

predicates of H and Ai call each other.

The level mapping as defined divides predicates in a program into several strata.

The predicate at each stratum depends only on those on the lower strata. The

level mapping is an abstract representation of the dependence relationship of the

subgoals that may occur in execution. If two subgoals A and A′ occur in a loop,

then it is guaranteed that m(A) = m(A′).

Definition 6

Let “H :−A1, ..., Ak, ..., An” be a rule in a program and m be the level mapping that

represents the call graph of the program. Ak is called the last depending subgoal of

the rule if m(Ak) = m(H) and m(H) > m(Ai) for i > k.

The last depending subgoal Ak is the last subgoal in the body that may depend

on the head to become complete. Thus, when the rule is re-executed on a subgoal, all

the subgoals to the right of Ak that have occurred before must already be complete.

Definition 7

Let “H :−A1, ..., An” be a rule in a program and m be a level mapping that repre-

sents the call graph of the program. If there is no depending subgoal in the body,

i.e., m(H) > m(Ai) for i = 1, ..., n, then the rule is called a base rule.

4.2 Semi-naive optimization



Linear Tabling Strategies and Optimizations 13

Theorem 1

Let “H :−A1, ..., Ak, ..., An” be a rule where Ak is the last depending tabled subgoal,

and C be a subgoal that is being resolved by using the rule in an iteration of a top-

most looping subgoal T . For a combination of answers of A1, · · ·, and Ak−1, if C has

occurred in an early round and the combination does not contain any new answers,

then it is safe to let Ak consume new answers only.

Proof

Because Ak is the last depending subgoal, the subgoals Ak+1, · · ·, and An must have

been completely evaluated when C is re-evaluated. Let Akold
and Aknew

be the old

and new answers of the subgoal Ak, respectively. For a combination of answers of

A1, · · ·, and Ak−1, if the combination does not contain new answers then the join

of the combination and Akold
must have been done and all possible answers for C

that can result from the join must have been produced during the previous round

because the subgoal C has been encountered before. Therefore only new answers in

Aknew
should be used.

Corollary 1

Base rules need not be considered in the re-evaluation of any subgoals.

Semi-naive optimization would be unsafe if it were applied to new subgoals that

have never been encountered before. The following example illustrates this possi-

bility:

?- p(X,Y).

:-table p/2.

p(X,Y) :- p(X,Z),q(Z,Y). (C1)

p(b,c) :- p(X,Y). (C2)

p(a,b). (C3)

:-table q/2.

q(c,d) :- p(X,Y),t(X,Y). (C4)

t(a,b). (C5)

In the first round of p(X,Y) the answer p(a,b) is added to the table by C3, and

in the second round the rule C2 produces the answer p(b,c) by using the answer

produced in the first round. In the third round, the rule C1 generates a new subgoal

q(c,Y) after p(X,Z) consumes p(b,c). If semi-naive optimization were applied to

q(c,Y), then the subgoal p(X,Y) in C4 could consume only the new answer p(b,c)

and the third answer p(b,d) would be lost.
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4.3 Analysis

Semi-naive optimization can lower the complexity of evaluation for some programs.

Consider the following example created by David S. Warren:3

:-table p/2.

p(X,Y) :- p(X,Z),c(Z,a,Y).

p(X,Y) :- p(X,Z),c(Z,b,Y).

p(X,X).

which detects if a given string represented as facts c(I, S, J) (J = I + 1,S =a or

S =b) is a sentence of the regular expression (a|b)∗. For a string (ab)n/2, the query

p(0,n) needs n/2 rounds to reach the fixpoint. With semi-naive optimization, the

variants of p(X,Z) in the bodies consume only new answers, and therefore the

program takes linear time. Without semi-naive optimization, however, the program

would take O(n2) time since the variants of p(X,Z) would consume all existing

answers.

In our semi-naive optimization, answers produced in the current round are con-

sumed immediately rather than postponed to the next round as in the bottom-up

version, and answers are promoted each time a new round is started. This way of

consuming and promoting answers may cause certain redundancy.

Consider the conjunction (P, Q). Assume Qo, Qp, and Qc are the sets of answers

in the three regions (respectively, old, previous, and current) of the subgoal Q when

Q is encountered in round i. Assume also that P had been complete before round

i and Pa is the set of answers. The join Pa 1 (Qp

⋃
Qc) is computed for the

conjunction in round i. Assume Q′

o, Q′

p, and Q′

c are the sets of answers in the three

regions when Q is encountered in round i+1. Since answers are promoted before

round i + 1 is started, we have:

Q′

o = Qo

⋃
Qp

Q′

p = Qc

⋃
α

where α denotes the new answers produced for Q after the conjunction (P, Q) in

round i. When the conjunction (P, Q) is encountered in round i + 1, the following

join is computed.

Pa 1 (Q′

p

⋃
Q′

c) = Pa 1 (Qc

⋃
α

⋃
Qc′)

Notice that the join Pa 1 Qc is computed in both round i and i + 1.

We could allow last depending subgoals to consume answers incrementally as

is done in bottom-up evaluation, but doing so may require more rounds to reach

fixpoints. Consider the following example, which is the same as the one shown above

but has a different ordering of clauses:

?- p(X,Y).

:-table p/2.

3 Personal communications.
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p(a,b). (C1)

p(b,c) :- p(X,Y). (C2)

p(X,Y) :- p(X,Z),q(Z,Y). (C3)

:-table q/2.

q(c,d) :- p(X,Y),t(X,Y). (C4)

t(a,b). (C5)

In the first round, C1 produces the answer p(a,b). When C2 is executed, the subgoal

in the body cannot consume p(a,b) since it is produced in the current round.

Similarly, C3 produces no answer either. In the second round, p(a,b) is moved to

the previous region, and thus can be consumed. C2 produces a new answer p(b,c).

When C3 is executed, no answer is produced since p(b,c) cannot be consumed. In

the third round, p(a,b) is moved to the old region, and p(b,c) is moved to the

previous region. C3 produces the third answer p(b,d). The fourth round produces

no new answer and confirms the completion of the computation. So in total four

rounds are needed to compute the fixpoint. If answers produced in the current

round are consumed in the same round, then only two rounds are needed to reach

the fixpoint.

4.4 Early promotion of answers

As discussed above, sequential consumption of answers may cause redundant joins.

In this subsection, we propose a technique called early promotion of answers to

reduce the redundancy.

Definition 8

Let Q be the first follower that exhausts its answers in the current round. Then all

the answers of Q in the current region are promoted to the previous region once

being consumed by Q.

Consider again the conjunction (P, Q) where Q is the first follower that exhausts

its answers. The answers in the current region Qc are promoted to the previous

region after Q has consumed all its answers in round i. By doing so, the join

Pa 1 Qc will not be recomputed in round i + 1 since Qc must have been promoted

to the old region in round i + 1.

Consider, for example, the following program:

?- p(X,Y).

:-table p/2.

p(a,b). (C1)

p(b,c) :- p(X,Y). (C2)

Before C2 is executed in the first round, p(a,b) is in the current region. Executing

C2 produces the second answer p(b,c). Since the subgoal p(X,Y) in C2 is the first
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follower that exhausts its answers in the current round, it is qualified to promote

its answers. So the answers p(a,b) and p(b,c) are moved from the current region

to the previous region immediately after being consumed by p(X,Y). As a result,

the potential redundant consumption of these answers by p(X,Y) is avoided in the

second round since they will all be transferred to the old region before the second

round starts.

Theorem 2

Early promotion does not lose any answers.

Proof

First note that although answers are tabled in three disjoint regions, all tabled

answers will be consumed except for some last depending subgoals that would

skip the answers in their old regions (see Theorem 1). Assume, on the contrary,

that applying early promotion loses answers. Then there must be a last depending

subgoal Ak in a rule “H :−A1, ..., Ak, ..., An” and a tabled answer A for Ak such

that A has been moved to the old region before being consumed by Ak so that A

will never be consumed by Ak. Assume A is produced in round i by a variant of

Ak. We distinguish between the following two cases:

1. The last depending subgoal Ak is not selected in round i. In round j(j > i), Ak is

selected either because H is new or some As(s < k) consumes a new answer. By

Theorem 1, Ak will consume all answers in the three regions, including the answer

A.

2. Otherwise, A must be produced by Ak itself or a variant subgoal of Ak that is

selected either before or after Ak in round i. If A is produced by Ak itself or before

Ak is selected, then the answer will be consumed by Ak since promoted answers

will remain new by the end of the round. If A is produced by a variant after Ak

is selected, then the answer cannot be promoted because Ak exhausts its answers

before the variant. In this case, the answer A will remain new in the next round

and will thus be consumed by Ak.

Both of the above two cases contradict our assumption. The proof then concludes.

5 Implementation

Changes to the Prolog machine ATOAM (Zhou 1996) are needed to implement

linear tabling. In this section we describe the changes to the data structures and

the instruction set. To make the paper self-contained, we first give an overview of

the ATOAM architecture.

5.1 An overview of ATOAM

The ATOAM uses all the data areas used by the WAM. The heap stores terms

created during execution. The register H points to the top of the heap. The trail stack

stores updates that must be undone upon backtracking. The register T points to
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the top of the trail stack. The control stack stores frames associated with predicate

calls.

Unlike in the WAM where arguments are passed through argument registers,

arguments in the ATOAM are passed through stack frames and only one frame is

used for each predicate call. Each time a predicate is invoked by a call, a frame

is placed on top of the local stack unless the frame currently at the top can be

reused. Frames for different types of predicates have different structures. For stan-

dard Prolog, a frame is either determinate or nondeterminate. A nondeterminate

frame is also called a choice point. The register AR points to the current frame and

the register B points to the latest choice point.

A determinate frame has the following structure:

A1..An Arguments

AR Pointer to the parent frame

CP Continuation program pointer

BTM Bottom of the frame

TOP Top of the frame

Y1..Ym Local variables

Where BTM points to the bottom of the frame, i.e., the slot for the first argument,

and TOP points to the top of the frame, i.e., the slot just next to that for the last

local variable4. The TOP register points to the next available slot on the stack.

The BTM slot is not in the original version (Zhou 1996). This slot is introduced

for supporting garbage collection and co-routining. The AR register points to the

AR slot of the current frame. Arguments and local variables are accessed through

offsets with respect to the AR slot. An argument or a local variable is denoted as

y(I) where I is the offset. Arguments have positive offsets and local variables have

negative offsets. It is the caller’s job to place the arguments and fill in the AR, and

CP slots. The callee fills in the BTM and TOP slots and initializes the local variables.

A choice point frame contains, in addition to the slots in a determinate frame,

four slots located between the TOP slot and local variables:

CPF Backtracking program pointer

H Top of the heap

T Top of the trail

B Parent choice point

The CPF slot stores the program pointer to continue with when the current branch

fails. The slot H points to the top of the heap when the frame is allocated. As in

the WAM, a new register, called HB, is used as an alias for B->H. When a variable

is bound, it must be trailed if it is older than B or HB.

5.2 The extension of ATOAM for tabling

A new data area, called table area, is introduced for memorizing tabled subgoals and

their answers. The subgoal table is a hash table that stores all the tabled subgoals

4 It is a convention in the literature that the stack is assumed to grow downwards
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encountered in execution. For each tabled subgoal and its variants, there is an entry

in the table, which is a record containing the following information:

SubgoalCopy

PioneerAR

State

TopMostLoopingSubgoal

DependentSubgoals

AnswerTable

The field SubgoalCopy points to the copy of the subgoal in the table area. In the

copy, all variables are numbered. Therefore all variants of the subgoal are identical.

The field PioneerAR points to the frame of the pioneer, which is needed for

implementing cuts. When the choice point of a tabled subgoal is cut off before the

subgoal reaches completion, the field PioneerARwill be set to NULL. When a variant

of the subgoal is encountered again after, the subgoal will be treated as a pioneer.

The field State indicates whether the subgoal is a looping subgoal, whether the

answer table has been revised, and whether the subgoal is complete or evaluated.

When execution backtracks to a top-most looping subgoal, if the revised bit is

set, then another round will be started for the subgoal. A top-most looping subgoal

becomes complete if this revised bit is unset after a round. At that time, the subgoal

and all of its dependent subgoals will be set to complete. As described in 3.1.3, an

evaluated subgoal is never evaluated again using rules in each round.

The TopMostLoopingSubgoal field points to the entry for the top-most looping

subgoal, and the field DependentSubgoals stores the list of subgoals on which this

subgoal depends. When a top-most looping subgoal becomes complete, all of its

dependent subgoals turn to complete too.

The field AnswerTable points to the answer table for this subgoal, which is

also a hash table. Hash tables expand dynamically. Let g be the pointer to the

record for a subgoal in the table. The first answer in the answer table is ref-

erenced as g->AnswerTable->FirstAnswer and the last answer is referenced as

g->AnswerTable->LastAnswer. In the beginning, the answer table is empty and

both FirstAnswer and LastAnswer reference a dummy answer.

The frame for a tabled predicate contains the following two slots in addition to

those slots stored in a choice point frame:

SubgoalTable

CurrentAnswer

The SubgoalTable points to the subgoal table entry, and the CurrentAnswer points

to the last answer that has been consumed. The next answer can be reached from

this reference on backtracking. When a frame is created, the slot CurrentAnswer

is initialized to be g->AnswerTable->FirstAnswer where g is the pointer to the

record for the tabled subgoal.

Three new instructions, namely table start, memo, and check completion, are

introduced into the ATOAM for encoding the three table primitives. Figure 2 shows

the compiled code of an example program.
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% :-tabled p/2.

% p(X,Y):-p(X,Z),e(Z,Y).

% p(X,Y):-e(X,Y).

p/2: table_start 2,1

fork r2

para_value y(2)

para_var y(-13)

call p/2 % p(X,Z)

para_value y(-13)

para_value y(1)

call e/2 % e(Z,Y)

memo

r2: fork r3

para_value y(2)

para_value y(1)

call e/2 % e(X,Y)

memo

r3: check_completion p/2

Fig. 2. Compiled code of an example program.

The table start instruction takes two operands: the arity (2) and the number

of local variables (1). The fork instruction sets the CPF slot to hold the address

to backtrack to on failure. The parameter passing instructions (para value and

para var in this example) pass arguments to the callee’s frame. The memo instruc-

tion is executed after an answer has been found. The check completion instruction

takes the entrance (p/2) as an operand so that the predicate can be re-entered when

it needs re-evaluation.

5.3 Implementing semi-naive optimization

To implement semi-naive optimization, we add the following two pointers into the

record for each tabled subgoal:

LastOldAnswer

LastPrevAnswer

where the pointer LastOldAnswer points to the last answer in the old region and

the pointer LastPrevAnswer points to the last answer in the previous region. The

check completion instruction resets the pointers for all the tabled subgoals in the

current cluster before it starts the next round:

for each subgoal g in the current cluster {

g->LastOldAnswer = g->LastPrevAnswer;

g->LastPrevAnswer = g->AnswerTable->LastAnswer;

}

The memo instruction is changed so that early promotion of answers is performed

if the condition for promotion is met. Let g be the pointer to the tabled subgoal.

If the subgoal has exhausted all its answers in the table and early promotion has



20 N.F. Zhou, T. Sato, and Y.D. Shen

never be done before on the subgoal in the same round, then answers in the current

region are promoted to the previous region:

g->LastPrevAnswer = g->AnswerTable->LastAnswer

The promoted answers will be moved to the old region before the start of the next

round.

A bit vector is added into the frame for each tabled predicate to indicate if any

new answer has been consumed by any tabled subgoal. Semi-naive optimization

can be applied only if no tabled subgoal in the predicate has consumed any new

answer.

A new instruction, called last depending tabled call, is introduced to encode

last depending tabled subgoals. In the example shown in Figure 2, the “call p/2”

instruction is changed to “last depending tabled call p/2” to enable semi-naive

optimization. The last depending tabled call instruction has the same behavior

as the call instruction, but the callee can check the type of the instruction to see

if it is invoked by a last depending tabled subgoal.

Let g be the pointer to the current tabled subgoal. The table start instruc-

tion sets the CurrentAnswer slot of the frame to g->LastOldAnswer so that the

subgoal consumes only new answers if: (1) the parent frame is a tabled frame; (2)

no bit in the bit vector in the parent frame is set, which means that no tabled

subgoal has consumed any new answer; and (3) the predicate is invoked by a

last depending tabled call instruction. If any of these condition is not satis-

fied, the CurrentAnswer slot is set to g->AnswerTable->FirstAnswer and all the

answers will be consumed by the subgoal.

6 Performance Evaluation

We empirically compared the two answer consumption strategies and evaluated

the effectiveness of semi-naive optimization. We also compared the performance

of B-Prolog (version 6.9) with XSB (version 3.0). A Linux machine with 750MHz

Intel process and 512GB RAM was used in the experiment. Benchmarks from three

different sources were used:5 Datalog programs shown in Figure 3 with randomly

generated graphs; the CHAT benchmark suite (Demoen and Sagonas 1999); and a

parser, called atr, for the Japanese language defined by a grammar of over 860 rules

(Uratani et al. 1994). This section presents the experimental results and reports the

statistics to support the results. This section also gives experimental results on the

Warren’s example for which SLG as implemented in XSB has lower time complexity

than linear tabling when semi-naive optimization ceases to be effective.

6.1 Comparison of the two answer-consumption strategies

Table 1 compares the two answer-consumption strategies in terms of speed and

stack space6 efficiencies. The difference of these two strategies in terms of CPU

5 The benchmarks are available from probp.com/bench.tar.gz.
6 The total usage of the local, global and trail stacks.
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tcl: tcl(X,Y):-edge(X,Y).

tcl(X,Y):-tcl(X,Z),edge(Z,Y).

tcr: tcr(X,Y):-edge(X,Y).

tcr(X,Y):-edge(X,Z),tcr(Z,Y).

tcn: tcn(X,Y):-edge(X,Y).

tcn(X,Y):-tcn(X,Z),tcn(Z,Y).

sg: sg(X,X).

sg(X,Y):-edge(X,XX),sg(XX,YY),edge(Y,YY).

Fig. 3. Datalog programs.

Table 1. Comparison of the lazy and eager strategies.
program CPU time Stack space

Lazy Eager Lazy Eager

tcl 1 1.02 1 1.00
tcr 1 0.96 1 1.00
tcn 1 0.90 1 1.00
sg 1 0.89 1 1.02

cs o 1 1.17 1 1.36
cs r 1 1.09 1 1.36
disj 1 1.06 1 1.41

gabriel 1 1.08 1 1.18
kalah 1 1.17 1 2.03
pg 1 2.28 1 3.59

peep 1 0.99 1 2.88
read 1 0.85 1 2.22
atr 1 1.03 1 1.06

average 1 1.12 1 1.62

time is small on average. This result implies that for programs with cuts declaring

the use of the eager strategy would not cause significant slow-down. The difference

in the usage of stack space is more significant than in CPU time. This is because,

as discussed before, the lazy strategy has better locality than the eager strategy.

6.2 Effectiveness of semi-naive optimization

Table 2 shows the effectiveness of semi-naive optimization in gaining speed-ups

under both strategies. Without this optimization, the system would consume over

30% more CPU time on average under either strategy. Our experiment also indicates

that on average over 95% of the gains in speed are attributed to the early promotion

technique.
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Table 2. Effectiveness of semi-naive optimization.
program CPU time (nosemi

semi
)

Lazy Eager

tcl 2.00 1.89
tcr 1.22 1.19
tcn 1.68 1.74
sg 1.22 1.51

cs o 1.10 1.10
cs r 1.09 1.10
disj 1.52 1.46

gabriel 1.32 1.15
kalah 1.52 1.41
pg 1.21 1.05

peep 1.09 1.11
read 1.98 1.27
atr 1.00 1.00

average 1.38 1.31

6.3 Comparison with XSB

Table 3 compares BP with XSB on time and stack space efficiencies. For XSB,

the stack space is the total of the maximum amounts of global, local, trail, choice

point, and SLG completion stack spaces. The default setting, namely, the SLG-

WAM and the local scheduling strategy, is used. BP is faster than XSB on the

Datalog programs and the parser but slower than XSB on the CHAT benchmark

suite; and BP consumes considerably less stack space than XSB on some of the

programs (tcr, tcn, sg, and atr).

The results must be interpreted with two differences of the two compared systems

taken into account: On the one hand, BP is on average more than twice as fast as

XSB for standard Prolog programs, and on the other hand the trie data structure

used in XSB (Ramakrishnan et al. 1998) is far more advanced than hash tables

used in BP for managing the table area. It is unclear to what extent each difference

contributes to the overall efficiency.

The YAP implementation of SLG-WAM is up to twice as fast as XSB (Somogyi

and Sagonas 2006) on the transitive closure and same-generation benchmarks with

both chain and cyclic graphs. This entails that the BP implementation of linear

tabling is comparable in speed with the most sophisticated implementation of SLG-

WAM for the Datalog benchmarks.

The empirical data on the usage of table space are not reported. BP constantly

consumes less table space than XSB for the benchmarks. In BP, both subgoal and

answer tables are maintained as dynamic hashtables. In XSB, in contrast, tables

are maintained as tries (Ramakrishnan et al. 1998). The usage of table space is

independent of the strategies and optimizations. Both BP and XSB would consume

the same amount of table space if the same data structure were employed.
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Table 3. Comparison of B-Prolog and XSB.
program BP XSB

(Lazy) CPU time Stack space

tcl 1 1.85 0.81
tcr 1 1.46 33.41
tcn 1 1.31 32.84
sg 1 1.47 109.12

cs o 1 0.37 0.57
cs r 1 0.35 0.73
disj 1 0.68 0.82

gabriel 1 0.61 2.05
kalah 1 1.00 0.58
pg 1 0.76 1.85

peep 1 0.37 2.97
read 1 0.69 11.12
atr 1 2.26 21.24

6.4 Statistics on iterations

Table 4 reports the statistics on the maximum (max its.) and average (ave. its.)

numbers of iterations for tabled subgoals to reach their fixpoints.7 The column

#subgoals shows the number of tabled subgoals. While for some programs, the

maximum number of iterations performed is high (e.g., the maximum number for

atr is 6), the average numbers are quite low.

The necessity of re-evaluating looping subgoals has been blamed for the low speed

of iteration-based tabling systems (Zhou et al. 2000; Guo and Gupta 2001). Our new

findings indicate that re-evaluation is not a dominant factor for the benchmarks.

This statistics well explain why an implementation of linear tabling could achieve

comparable speed performance with SLG-WAM for the benchmarks.

6.5 The complexity issue

The following is a slightly changed version of the Warren’s example which disenables

semi-naive optimization:

:-table p/2.

p(X,Y) :- q(X,Z),c(Z,a,Y).

p(X,Y) :- q(X,Z),c(Z,b,Y).

p(X,X).

q(X,Y) :- p(X,Y).

Since the last depending subgoals q(X,Z) in p/2 are not tabled, semi-naive opti-

mization cannot be applied to p/2. For a string (ab)n/2, the query p(0,n) needs

7 Each subgoal has a counter which is initialized when the subgoal is tabled and is incremented
each time the subgoal is resolved using rules. Note that semi-naive optimization may reduce
the work of each iteration but has no effect on the number of iterations needed to reach the
fixpoint.
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Table 4. Statistics on iterations.
program #subgoals max its. ave. its.

tcl 1 2 2.00
tcr 51 2 1.96
tcn 51 2 1.98
sg 153 2 1.32

cs o 76 2 1.14
cs r 76 2 1.16
disj 74 2 1.20

gabriel 59 2 1.20
kalah 102 3 1.24
pg 48 2 1.13

peep 49 3 1.29
read 131 5 1.34
atr 7139 6 1.81

n/2 iterations to reach the fixpoint. Since in each iteration the subgoal q(X,Z)

is rewritten into p(X,Z) which returns all existing answers, the total time taken

is O(n2). In contrast, the program takes only O(n) time under SLG. For the size

n=5000, it took BP 3.5 seconds to run the program while XSB only 15 millisec-

onds. For the original version of the program to which semi-naive optimization is

applicable, it took BP only 7 milliseconds.

7 Related Work

There are three different tabling schemes, namely OLDT and SLG (Tamaki and

Sato 1986; Sagonas and Swift 1998), CAT (Demoen and Sagonas 1998; Somogyi

and Sagonas 2006), and iteration-based tabling including linear tabling (Shen et al.

1999; Shen et al. 2001; Zhou et al. 2000; Zhou and Sato 2003; Zhou et al. 2004)

and DRA (Guo and Gupta 2001). SLG (Chen and Warren 1996) is a formalization

based on OLDT for computing well-founded semantics for general programs with

negation. The basic idea of using iterative deepening to compute fixpoints dates

back to the ET* algorithm (Dietrich 1987).

In SLG-WAM, a consumer fails after it exhausts all the existing answers and

its state is preserved by freezing the stack so that it can be reactivated after new

answers are generated. The CAT approach does not freeze the stack but instead

copies the stack segments between the consumer and its producer into a separate

area so that backtracking can be done normally. The saved state is reinstalled after

a new answer is generated. CHAT (Demoen and Sagonas 1999) is a hybrid approach

that combines SLG-WAM and CAT.

Linear tabling relies on iterative computation of looping subgoals to compute

fixpoints. Linear tabling is probably the easiest scheme to implement since no effort

is needed to preserve states of consumers and the garbage collector can be kept

untouched for tabling. Linear tabling is also the most space-efficient scheme since

no extra space is needed to save states of consumers. Nevertheless, linear tabling



Linear Tabling Strategies and Optimizations 25

without optimization could be computationally more expensive than the other two

schemes.

The DRA method (Guo and Gupta 2001) is also iteration based, but it identifies

looping clauses dynamically and iterates the execution of looping clauses to compute

fixpoints. While in linear tabling iteration is performed on only top-most looping

subgoals, in DRA iteration is performed on every looping subgoal. In ET* (Dietrich

1987), every tabled subgoal is iterated even if it does not occur in a loop. Besides the

difference in answer consumption strategies and optimizations, the linear tabling

scheme described in this paper differs from the original version (Zhou et al. 2000;

Shen et al. 2001) in that followers fail after they exhaust their answers rather than

steal their pioneers’ choice points. This strategy is originally adopted in the DRA

method.

The two consumption strategies have been compared in XSB (Freire et al. 1998)

as two scheduling strategies. The lazy strategy is called local scheduling and the

eager strategy is called single-stack scheduling. Another strategy, called batched

scheduling, is similar to local scheduling but top-most looping subgoals do not have

to wait until their clusters become complete to return answers. Their experimental

results indicate that local scheduling constantly outperforms the other two strate-

gies on stack space and can perform asymptotically better than the other two

strategies on speed. The superior performance of local scheduling is attributed to

the saving of freezing stack segments. Although our experiment confirms the good

space performance of the lazy strategy, it gives a counterintuitive result that the

eager strategy is as fast as the lazy strategy. This result implies that the cost of

iterative evaluation is considerably smaller than that of freezing stack segments,

and for predicates with cuts the eager strategy can be used without significant

slow-down. In our tabling system, different answer consumption strategies can be

used for different predicates. The tabling system described in (Rocha et al. 2005a)

also supports mixed strategies.

Semi-naive optimization is a fundamental idea for reducing redundancy in bottom-

up evaluation of logic database queries (Bancilhon and Ramakrishnan 1986; Ullman

1988). As far as we know, its impact on top-down evaluation had been unknown

before (Zhou et al. 2004). OLDT (Tamaki and Sato 1986) and SLG (Sagonas and

Swift 1998) do not need this technique since it is not iterative and the underlying

delaying mechanism successfully avoids the repetition of any derivation step. An

attempt has been made by Guo and Gupta (Guo and Gupta 2001) to make incre-

mental consumption of tabled answers possible in DRA. In their scheme, answers

are also divided into three regions but answers are consumed incrementally as in

bottom-up evaluation. Since no condition is given for the completeness and no ex-

perimental result is reported on the impact of the technique, we are unable to give

a detailed comparison.

Our semi-naive optimization differs from the bottom-up version in two major

aspects: Firstly, no differentiated rules are used. In the bottom-up version differen-

tiated rules are used to ensure that at least one new answer is involved in the join

of answers for each rule. Consider, for example, the clause:
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H : −P, Q.

The following two differentiated rules are used in the evaluation instead of the

original one:

H : −∆P, Q.

H : −P, ∆Q.

Where ∆P denotes the new answers produced in the previous round for P. Us-

ing differentiated rules in top-down evaluation can cause considerable redundancy,

especially when the body of a clause contains non-tabled subgoals.

The second major difference between our semi-naive optimization and the bottom-

up version is that answers in our method are consumed sequentially until exhaus-

tion, not incrementally as in bottom-up evaluation. A tabled subgoal consumes

either all available answers or only new answers including answers produced in

the current round. Neither incremental consumption nor sequential consumption

seems satisfactory. Incremental consumption avoids redundant joins but may re-

quire more rounds to reach fixpoints. In contrast, sequential consumption never

need more rounds to reach fixpoints but may cause redundant joins of answers.

The early promotion technique alleviates the problem of sequential consumption.

By promoting answers early from the current region to the previous region, we can

considerably reduce the redundancy in joins.

Semi-naive optimization may lower time complexities in bottom-up evaluation

(Bancilhon and Ramakrishnan 1986). The same result holds to the top-down version

as demonstrated by Warren’s example. Our experimental results show that semi-

naive optimization gives an average speed-up of over 30% to linear tabling if answers

are promoted early, and almost no speed gain if no answer is promoted early. In

linear tabling, only looping subgoals need to be iteratively evaluated. For non-

looping subgoals, no re-evaluation is necessary and thus semi-naive optimization

has no effect at all on the performance. Most of the looping subgoals in our chosen

benchmarks reach their fixpoints after 2-3 iterations. In general, more iterations

are needed to reach fixpoints in bottom-up evaluation. In addition, in bottom-up

evaluation, the order of the joins can be optimized and no further joins are necessary

once a participating set is known to be empty. In contrast, in linear tabling joins

are done in strictly chronological order. For a conjunction (P, Q, R), the join P 1 Q

is computed even if no answer is available for R. Because of all these factors, semi-

naive optimization is not as effective in linear tabling as in bottom-up evaluation.

Our semi-naive optimization requires the identification of last depending sub-

goals. For this purpose, a level mapping is used to represent the call graph of

a given program. The use of a level mapping to identify optimizable subgoals is

analogous to the idea used in the stratification-based methods for evaluating logic

programs (Apt et al. 1988; Chen and Warren 1996; Przymusinski 1989). In our level

mapping, only predicate symbols are considered. It is expected that more accurate

approximations can be achieved if arguments are considered as well.

Semi-naive optimization does not solve all the problems of recomputation in

linear tabling. Recall the Warren’s example:
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:-table p/2.

p(X,Y) :- p(X,Z),c(Z,a,Y).

p(X,Y) :- p(X,Z),c(Z,b,Y).

p(X,X).

Assume there is a very costly non-tabled subgoal preceding p(X,Z), then the sub-

goal has to be executed in each iteration even with semi-naive optimization. This

example demonstrates the acuteness of the problem of recomputation because the

number of iterations needed to reach the fixpoint is not constant. One treatment

would be to table the subgoal to avoid recomputation, as suggested in (Guo and

Gupta 2001), but tabling extra predicates can cause other problems such as over

consumption of table space.

8 Conclusion

In this paper we have described two answer consumption strategies (namely, lazy

and eager strategies) and semi-naive optimization for linear tabling. We have com-

pared the two strategies both qualitatively and quantitatively. Our results indicate

that, while the lazy strategy has better space efficiency than the eager strategy, the

eager strategy is comparable in speed with the lazy strategy. This result implies

that for all-solution search programs the lazy strategy should be adopted and for

partial-solution search programs including programs with cuts the eager strategy

should be used.

We have tailored semi-naive optimization to linear tabling and have given suf-

ficient conditions for it to be complete. Moreover, we have proposed a technique

called early answer promotion to reduce redundant consumption of answers. Our ex-

perimental result indicates that semi-naive optimization gives significant speed-ups

to some programs.

Linear tabling has several attractive advantages including its simplicity, ease of

implementation, and good space efficiency. Early implementations of linear tabling

were several times slower than XSB. This paper has demonstrated for the first time

that linear tabling with optimization is as competitive as SLG on time efficiency as

well for the benchmarks.

Semi-naive optimization does not solve all the problems of recomputation in linear

tabling. There are programs for which recomputation can be costly, even leading to

higher complexities. The future work is to identify the patterns of such programs

and find methods to deal with them.
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