Tabling for Planning

Neng-Fa Zhou'!, Roman Bartak?, and Agostino Dovier3
1 CUNY Brooklyn College & Graduate Center
2 Charles University
3 Univ. di Udine

Abstract.

1 Introduction

Given an initial state, a final state, and a set of possible actions, the planning
problem is to find a plan that transforms the initial state to the final state. There
has been a lot of interest in planning because planning is an inevitable task for
building many intelligent systems such as intelligent robots. Different classes of
planning problems have been studied and many approaches have been proposed
[4,13]. The classical planning problem has been a target problem for logic pro-
gramming since its inception. The first logic programming language, PLANNER
[6], was designed as “a language for proving theorems and manipulating models
in a robot”, and planning has been an important problem domain for Prolog [§].
Despite the amenability of Prolog to planning, there has been little success in
applying Prolog to planning due to the looping and the state explosion problems.
The planning problems that have been tackled by using Prolog are mostly toy
problems, and Prolog is not recognized as a tool for planning.

Answer Set Programming (ASP) has had more successes than Prolog in solv-
ing planning problems [1,9]. A typical ASP encoding of a planning problem di-
vides the transition from the initial state to the final state into several frames.
The first frame corresponds to the initial state and the last frame corresponds to
the final state. Constraints are generated to describe the frames, ensuring that
frame t + 1 is the result of applying one of the actions to frame ¢t. The ASP
encoding is translated into a SAT encoding and solved with a SAT solver. ASP,
as a modeling language for planning, has arguably popularized the satisfiability
approach to planning [7,12].

Tabling [14, 21] can solve the looping problem in search for planning. Just like
traditional STRIPS-based planners [2], a tabling-based planner treats a planning
problem as a state-space search problem. During search, the planner tables all the
states that have been encountered so that no state will be expanded more than
once. For planning, the non-selective tabling-all approach is not feasible since
there are normally an infinite number of plans for a problem. Mode-directed
tabling [5,20], which performs selective tabling based on user-supplied modes,
can be used. Just like tabled model checkers [11], tabled planners also face the
state explosion problem. Fortunately, with term-sharing techniques [10, 15, 19], a



good representation for states that facilitates sharing can alleviate the problem.
Despite that tabling has been successfully used to solve problems that were hard
to solve with Prolog [16, 17], selective tabling has two weaknesses when applied
to tabling: (1) no answer can be returned until the tabled predicate is completely
evaluated; (2) it is impossible to handle resources and perform resource-bounded
search.

This paper proposes new implementation techniques to deal with these weak-
nesses. To deal with the first weakness, this paper proposes a new table mode,
called nt, that instructs the system not to table the argument. For planning,
the inherited attribute values of a state, including the current partial plan, its
cost, and the remaining resource amount, can be passed to the next state as
an nt argument. Since the nt argument is not used in variant checking, two
equivalent states will be treated as the same even if they have different attribute
values. Thanks to the availability of the inherited attribute values, the planner
can return a satisfactory plan as an exception without waiting for the completion
of the tabled predicate. For resource-bounded planning, this paper proposes a
resource-aware tabling system that fails a state immediately without expanding
it if the same state has failed before due to a lack of resources and the new
occurrence does not carry more resources than the old one.

The proposed techniques have been employed in the implementation of the
planner module of Picat [18]. In order to use the planner module to solve
a planning problem, users only need to specify the final state and the set of
actions, and call the planner on an initial state to find a plan or a best plan.
As users do not need to use exceptions or tabling directly, the planner module
offers high-level abstraction for declarative description of planning problems.
Furthermore, the early termination and resource-bounded search techniques can
greatly improve the performance of tabled search for planning.

As examples, this paper also gives solutions in Picat to three of planning
benchmarks used in the Fourth ASP Competition. For each problem, it gives a
representation of the states to take advantage of the term-sharing technique in
the system and a definition of the set of actions. It also gives the experimental
results and compare them with that obtained by the cutting-edge ASP-based
planner, Clasp. For all of the three benchmarks, the tabled planners of Picat
significantly outperform the planners in Clasp.

The remainder of the paper is structured as follows. Section 2 surveys related
approaches to planning. Section 3 gives an introduction to Picat’s tabling system,
which is used in the implementation of the planner module. Section 3.3 describes
the two core predicates in the planner module and gives an example to illustrate
the use of the module. Section 4 details the implementation of the two core
planner predicates. Section 5 gives solutions for three example problems, and
for each solution it also compares its performance with the solution in Clasp
that was submitted to the ASP Competition. Section 6 concludes the paper.



2 Related Work on Planning

3 Tabling in Picat and the planner Module

Picat is a simple, and yet powerful, logic-based multi-paradigm programming
language aimed for general-purpose applications. Picat is a rule-based language,
in which predicates, functions, and actors are defined with pattern-matching
rules. Picat incorporates many declarative language features for better produc-
tivity of software development, including explicit non-determinism, explicit uni-
fication, functions, list comprehensions, constraints, and tabling. Picat also pro-
vides imperative language constructs, such as assignments and loops, for pro-
gramming everyday things. This section gives a brief introduction into Picat’s
tabling system. The readers are referred to the user’s guide [18] for the details
of Picat.

3.1 Tabling All

In Picat, in order to have all calls and answers of a predicate or function tabled,
users just need to add the keyword table before the first rule.

The following gives an example of a tabled function and an example of a
tabled predicate.

table

fib(0) = 1.

fib(1) = 1.

fib(N) = fib(N-1)+fib(N-2).
table

reach(X,Y) 7=> edge(X,Y).
reach(X,Y) => reach(X,Z),edge(Z,Y).

The function fib is defined with three function facts. For a function call
fib(N), if the argument N is equal to 0 or 1, then 1 is returned; otherwise,
the function call is rewritten into the sum of fib(N-1) and fib(N-2). When
not tabled, the function call fib(N) takes exponential time in N. When tabled,
however, it takes only linear time.

The reach/2 predicate defines the reachability relation of a graph whose
edges are given by the predicate edge/2. The first rule in the definition, where
the head is connected to the body with the operator ?=>, is backtrackable. This
means that the rewriting of reach(X,Y) into edge(X,Y) is tentative. When
execution backtracks over edge(X,Y), the rewritting will be undone and the
next rule will be applied to reach(X,Y). The second rule, where the operator =>
is used, is a non-backtrackable rule. When a non-backtrackable rule is applied
to a call, the rewritting of the call to the body is a commitment, and will not be
undone upon backtracking.



3.2 Selective Tabling with Table Modes

Users can also give table modes to instruct the system on what answers to table.
Mode-directed selective tabling is especially useful for dynamic programming
problems [5,20]. In mode-directed tabling, a plus-sign (+) indicates input, a
minus-sign (-) indicates output, max indicates that the corresponding variable
should be maximized, min indicates that the corresponding variable should be
minimized, and nt indicates that the corresponding argument is not tabled.
Input arguments are assumed to be ground. Output arguments, including min
and max arguments, are assumed to be variables. An argument with the mode min
or max is called an objective argument. Only one argument can be an objective
to be optimized. As an objective argument can be a compound value, this limit
is not essential, and users can still specify multiple objective variables to be
optimized. Only the last argument can have the mode nt. Again, as the nt
argument can be a compound value, this limit is not essential, and users can
pass multiple values to a tabled callee without having these values tabled. When
a table mode declaration is provided, Picat tables only one answer for the same
input arguments, which is optimal if an objective argument is specified.
The following example uses mode-directed tabling to find a shortest path.

table (+,+,-,min)
sp(X,Y,Path,W) 7=>

Path = [(X,1)],

edge (X,Y,W).
sp(X,Y,Path,W) =>

Path = [(X,Z)|Patht],

edge(X,Z,W),

sp(Z,Y,Pathl,W1),

W = W+W1l.

The table mode table (+,+,-,min) is given before the first rule in the definition.
The predicate edge (X,Y,W) specifies a weighted directed graph, where W is the
weight of the edge between vertex X and vertex Y. The predicate sp(X,Y,Path,W)
states that Path is a path from X to Y with the minimum weight W. Note that
whenever the predicate sp/4 is called, the first two arguments must always be
instantiated. For each pair, the system stores only one path with the minimum
weight. Also note that Picat uses pattern-matching rather than unification to
test if a rule is applicable to a call. Any unifications that can bind variables in
the call must be specified in the body of a rule.

The following program finds a shortest path among those with the minimum
weight for each pair of vertices:

table (+,+,-,min).

sp(X,Y,Path,WL) ?7=>
Path = [(X,V)],
WL = (Wxy,1),
edge (X,Y,Wxy) .



sp(X,Y,Path,WL) =>
Path = [(X,Z)|Pathi],
edge (X,Z,Wxz),
sp(Z,Y,Pathl,WL1),
WL1 = (Wzy,Lenl),
WL = (Wxz+Wzy,Lenl+l).

For each pair of vertices, the pair of variables (W,Len) is minimized, where W is
the weight, and Len is the length of a path. The built-in function compare_terms/2
is used to compare answers. Note that the order is important. If the term would
be (Len,W), then the program would find a shortest path, breaking a tie by
selecting one with the minimum weight.

The nt mode is useful for passing global constant data, such as maps, to
tabled calls. In a tabled search tree, the nodes can have attributes. Some of
the attributes are inherited, whose values are inherited from the parent node,
and some of the attributes are synthesized, whose values cannot be computed
until the synthesized attributes of the children are computed. The nt mode is
also useful for passing inherited attribute values down the search tree. In the
implementation of the planner module, an nt argument is used to pass the
current partial plan, its cost, and the available resource amount down the search
tree.

3.3 The planner Module of Picat

The planner module of Picat provides predicates that can be used to solve
planning problems. Given an initial state, a final state, and a set of possible
actions, a planning problem is to find a plan that transforms the initial state to
the final state. In order to use the planner module to solve a planning problem,
users have to provide the following two global predicates:*

— final(S): This predicate succeeds if S is a final state.

— action(S,NextS, Action, ActionCost): This predicate encodes the set of
actions of the planning problem. The state S can be transformed to NextS
by performing Action. The cost of Action is ActionCost, which must be non-
negative. If the plan’s length is the only interest, then ActionCost should be
1.

The following two predicates constitute the core of the planner module.

— plan(S, Limit, Plan, PlanCost): This predicate, if succeeds, binds Plan to
a plan that can transform state S to a final state. PlanCost is the cost of
Plan, which cannot exceed Limit, a given non-negative integer. This predi-
cate searches for a plan by performing resource-bounded search. In the search
tree, each node represents a state and carries attribute values including the
remaining resource amount that can be used by future actions to transform

4 A predicate or function symbol defined in a file is global if the file does not declare
a module name. Global symbols can be accessed from anywhere.



import planner.

go =>
so0=[s,s,s,s],
best_plan(S0,Plan),
writeln(Plan).

final([n,n,n,n]) => true.

action([F,F,G,C],S1,Action,ActionCost) 7=>

Action=farmer_wolf,

ActionCost=1,

opposite(F,F1),

S1=[F1,F1,G,C],

not unsafe(S1).
action([F,W,F,C],S1,Action,ActionCost) 7=>

Action=farmer_goat,

ActionCost=1,

opposite(F,F1),

S1=[F1,W,F1,C],

not unsafe(S1).
action([F,W,G,F],S1,Action,ActionCost) ?

Action=farmer_cabbage,

ActionCost=1,

opposite(F,F1),

S1=[F1,W,G,F1],

not unsafe(S1).
action([F,W,G,C],S1,Action,ActionCost)

Action=farmer_alone,

ActionCost=1,

opposite(F,F1),

S1=[F1,W,G,C],

not unsafe(S1).

>

>

opposite(n,Opp) => Op=s.
opposite(s,Opp) => Opp=n.

unsafe([F,W,G,_C]) ,W==G,F!==W => true.
unsafe([F,_W,G,C]),G==C,F!==G => true.

Fig. 1. A program for the Farmer’s problem using planner.



the state to a final state. In resource-bounded search, a node is expanded
only if the state is new and the resource amount is non-negative or the state
has occurred before in an old node that had failed before due to a lack of
resources but the current node carries more resources than the old one. The
argument PlanCost is optional. If PlanCost is missing, then the cost of
the plan is not returned. The argument Limit is also optional. If Limit is
missing, then a large integer is used as the resource limit.

— plan_unbounded (S, Limit, Plan, PlanCost): This predicate is the same as
above except that it searches for a plan with depth-unbounded search. In
depth-unbounded search, the resource limit is not taken into account during
search. A new node is still expanded even if the resource limit has exceeded.
The advantage of depth-unbounded search is that a failed state needs not to
be re-explored when it occurs again. The arguments PlanCost and Limit
are optional.

Other predicates in the planner module can easily be implemented by using
these two predicates. For example, the best_plan(S,Plan) predicate uses the
plan/4 predicate to find the first plan. If such a plan is found, then it tries to
find a better plan by imposing a stricter limit. This step is repeated until no
better plan is found. If any plan is found, then the last plan found is returned
as a best plan.

The program shown in Figure 1 solves the Farmer’s problem by using the
planner module. In this example, the length of the plan is the only interest, so
the cost of each action is 1.5

4 The Implementation of the planner Module

This section gives the definitions of the two core predicates in the planner
module: plan/4, and plan_unbounded/4. Several efforts are made to enhance
the performance of the planner. First, the inherited attribute values, including
the current partial plan, its cost, and the remaining resource amount, are passed
down to a child node as an nt argument. Second, whenever a satisfactory plan
that is within the resource limit is found, it is thrown as an exception, which will
be caught by the first call to the tabled predicate. In this way, the plan can be
returned without waiting for the tabled predicate to become complete. Third,
for resource-bounded search, the linear tabling mechanism is tailored to it in
such a way that a node is expanded only when the node has enough resources
available.

5 Pattern-matching requires all output unifications to be given in the bodies of rules.
Pattern-matching facilitates full indexing of rules. For this example, the matching of
the first argument of a call against the four-element list pattern is done only once.



4.1 Resource-bounded Search

Figure 2 gives the definition in Picat of the predicate plan/4. The following
array is passed from a state to the next state:’

{Limit,IPlan,IPlanCost}

where Limit is the maximum amount of resources that can be consumed by
future actions, IPlan is an inherited partial plan from the parent, and IPlanCost
is the total cost of IPlan. Initially, Limit is the limit given by the user, IPlan is
[, and IP1lanCost is 0. The array is passed down as an nt argument. Therefore,
it is not used in variant checking. Two calls to plan_bounded_aux are variants if
their first arguments are variants.

The first rule of plan_bounded_aux throws ((IPlan.reverse(),IPlanCost))
as an exception if final(S) succeeds, where IPlan.reverse() returns the re-
versed list of IP1an.” The exception will be caught by the first call to the tabled
predicate, which binds Plan and PlanCost of plan/4.

The second rule of plan bounded aux calls action/4 to select an action.
After that, it updates the remaining resource limit and checks the limit. If the
updated limit is negative, then it triggers backtracking; otherwise, it continues
with the tabled search by recursively calling plan_bounded_aux on the new state
S1.

plan(S,Limit,Plan,PlanCost) =>
IPlan = {Limit, [],0},
catch(plan_bounded_aux(S,IPlan), (Plan,PlanCost), true).

table plan_bounded_aux(+,nt)
plan_bounded_aux(S,{Limit,IPlan,IPlanCost}),

final(S)
=>

throw((IPlan.reverse(), IPlanCost)).
plan_bounded_aux(S,{Limit,IPlan,IPlanCost}) =>

action(S,S1,Action,ActionCost),

Limitl = Limit-ActionCost,

Limitl >= O,

plan_bounded_aux(S1,{Limit1, [Action|IPlan],IPlanCost+ActionCost}).

Fig. 2. The implementation of plan/4.

5 In Picat, an array of size n is represented as a structure with the special functor

{}/n.

" In Picat, the OOP notation O.f(Ay,..., A,) is the same as f(O, A1, ..., A,), unless
O is an atom, in which case O must be a module qualifier for f.



The underlying tabling system is modified to treat plan_bounded_aux/2 in
a special way to perform resource-bounded search.® The tabling system [21] de-
fines four basic operations, including subgoal-lookup-registration, answer-lookup-
registration, answer-consumption, and completion-checking. Since no answer is
generated for plan_bounded_aux/2 and the same completion-checking operation
can be used in case no plan is found, the only operation that needs a modifi-
cation is subgoal-lookup-registration. The following gives the new definition of
this operation for plan_bounded_aux/2.

Subgoal-lookup-registration: For a call to plan_bounded_aux, the system
looks up the subgoal table to see if there is a call that has the same first
argument.? If not, the system inserts the call into the subgoal table, memories
the resource limit of the call, and continues with the normal execution of the
program. Since the second argument of the call is not tabled, its slot is
reused to memorize the resource limit. If the lookup finds that there already
is a call in the table that has the same first argument, then the system
checks if the call in the table is complete. If it is not complete, then the
current call must be a looping descendent of the old call. In this case, the
system fails the current call, triggering backtracking. If the call in the table
is complete, meaning that it has failed before due to a lack of resources, then
the system compares the resource limit of the current call with that of the
one in the table. If the current limit is greater than the old one, then the
system updates the limit and continues with the normal execution of the
program. Otherwise, if the current call does not have more resources than
the old one, then the system fails it.

For a call to plan_bounded_aux, the system fails it immediately if the same
call, disregarding the second argument, has failed before due to a lack of resources
and the current call does not carry more resources than the old one. In this way,
the system can considerably reduce the search space.

4.2 Resource-unbounded Search

Figure 3 gives the definition in Picat of the predicate plan_unbounded/4. Just
as in the definition of plan/4, an array of inherited attribute values is passed
down as a non-tabled argument from a state to the next state.

The predicate plan_unbounded_aux performs resource-unbounded (also called
depth-unbounded) tabled search. For this predicate, the linear tabling system [21]
is used without any modification. For a call to plan_unbounded_aux with the
first argument S, the system looks up the subgoal table to see if there is a call
in the table that has the same first argument as S. If not, the system inserts the
call into the table, ignoring the output and nt arguments. After registering the
call, the system uses the rules to resolve the call. If final(S) succeeds, then

8 In the real implementation, an internal name is used instead of plan_bounded_aux
that cannot occur in users’ programs.
9 As the second argument is nt, it is not used in the lookup.



the system tables the answer (the empty plan with cost 0) for the call if it is
not tabled yet. After that, the system backtracks to the latest previous call of
plan_unbounded_aux that has an alternative action to be tried on the state. If
there is no such a previous call available, then it means that the system has
finished the current round of evaluation and decides whether or not the top-
most looping call has completed with a fixed point. If the top-most looping call
has completed, then that call succeeds or fails, depending on if it has generated
an answer. Otherwise, if the top-most call has not completed, the system starts
another round of evaluation of the call.

If £inal(S) fails, then the system selects an action, Action, to generate a
new state S1 and calls plan_unbounded_aux on S1 with an array of updated
attribute values. If this recursive call in the body succeeds with a plan, Plani,
for 81, then the plan, [Action|Plan1], becomes a synthesized plan for S. Before
having the synthesized plan tabled for S, the rule checks if an acceptable plan has
been found for the initial state. If so, it throws the combined plan of the inherited
and synthesized plans as an exception. The exception will be caught by the first
call to plan_unbounded_aux, which returns the plan to the top-level predicate
plan_unbounded. If the combined plan is not acceptable, then the system tables
the answer if no answer has been tabled for the call or updates the existing
tabled answer if the newly generated answer has a lower cost than the tabled
one. After that, the system backtracks.

The predicate plan_unbounded_aux allows calls with negative resource amounts
to be generated. The advantage of resource-unbounded search is that a failed
state needs not to be re-explored when it occurs again. If a state has been found
to be a failure after all possible actions have been tried on it, then this state will
be tabled as a failed state. If a failed state occurs again during search, then it
fails immediately without trying any of the actions. This can lead to a big saving
of time for some problems.

Just as in the definition of plan/4, early termination would be impossible
without access to the inherited attribute values. For a state, if the sum of the
cost of the inherited plan from the parent and the cost of the synthesized plan
for the state is less than or equal to the initial limit, then the combined plan is
thrown as an exception.

5 Application Examples

5.1 Nomystery

Problem Description
Encoding

Performance The Picat solution solved all of the 30 instances used in the
competition, while Clasp solved only 17 of the instances. Clasp was terminated

10



plan_unbounded(S,Limit,Plan,PlanCost) =>
IPlan = {Limit, [1,0},
catch(plan_unbounded_aux(S,Plan,PlanCost,IPlan), (Plan,PlanCost), true).

table (+,-,min,nt)
plan_unbounded_aux(S,Plan,PlanCost,_),
final(S)
=>
Plan=[],
PlanCost=0.
plan_unbounded_aux(S,Plan,PlanCost,{Limit,IPlan,IPlanCost}) =>
action(S,S1,Action,ActionCost),
Inheritedl = {Limit-ActionCost, [Action|IPlan],IPlanCost+ActionCost},
plan_unbounded_aux(S1,Plani,PlanCostl,Inheritedl),
Plan = [Action|Plani],
PlanCost = PlanCostl+ActionCost,
(PlanCost =< Limit —>
throw((IPlan.reverse()++Plan,IPlanCost+PlanCost))

true

Fig. 3. The implementation of plan unbounded/4.

by signals because of either out-of-memory or out-of-time for the other 13 in-
stances. For the instances solved by both Picat and Clasp, Picat is more than
100 times faster than Clasp. For the Picat solution, the resource-bounded pred-
icate, plan/4, was used. For this benchmark, plan unbounded/4 solved all the
instances as efficiently as plan/4.

5.2 Sokoban

Problem Description
Encoding

Performance The Picat solution solved all of the 30 instances used in the
competition. Clasp ran out of memory on 16 of the 30 instances. Some of the
instances require plans of over 500 macro steps to solve and this poses a big
challenge to Clasp’s grounder because the converted SAT encodings are too
large to store in memory. For instances solved by both Clasp and Picat, Picat is
significantly faster than Clasp.

The Picat encoding is basically the same as the B-Prolog encoding presented
n [16], but this comparison produced much favorable results for Picat because
of the following two reasons: (1) the benchmark used in the competition al-
lows more boxes than goal locations and therefore makes it hard to reverse

11



the roles of boxes and goal locations (so called reversed Sokoban); (2) the im-
provement of the implementation, such as the introduction of hash-consing, en-
hances sharing and reduces memory consumption by Picat. For the Picat solu-
tion, the predicate plan_unbounded/4 was used. When plan/4 was used instead
of plan_unbounded/4 to perform resource-bounded search, Picat also solved all
of the instances but was several times slower. This is because plan_unbounded/4
tables many failed configurations and never explores the same failed configura-
tion more than once. On the other hand, a configuration that is failed due to a
lack of resources may need to be explored multiple times when resource-bounded
search is used.

5.3 Ricochet Robots

Problem Description
Encoding

Performance This problem, which has a branching factor of 12, has been con-
sidered hard to solve. The Clasp solution is described in [3]. The Picat encoding,
which defines the action predicate with only two rules, is much simpler than the
Clasp encoding. It uses the resource-bounded predicate, plan/4. The resource-
unbounded predicate, plan_unbounded/4, failed to solve any of the instances
due to out-of-memory. The B-Prolog solution submitted to the competition uses
a very complicated encoding that sacrifices completeness for memory efficiency.
That encoding failed to prove the inconsistency of 17 of the 30 instances. Both
Clasp and Picat solved all of the 30 instances, but Picat is several times faster
than Clasp.

6 Conclusion
Acknowledgements

References

1. Yannis Dimopoulos, Bernhard Nebel, and Jana Koehler. Encoding planning prob-
lems in nonmonotonic logic programs. In ECP, pages 169181, 1997.

2. Richard Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artif. Intell., 2(3/4):189-208, 1971.

3. Martin Gebser, Holger Jost, Roland Kaminski, Philipp Obermeier, Orkunt
Sabuncu, Torsten Schaub, and Marius Schneider. Ricochet robots: A transverse
ASP benchmark. In LPNMR, 2013.

4. Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning: Theory
and Practice. Morgan Kaufmann, 2004.

5. Hai-Feng Guo and Gopal Gupta. Simplifying dynamic programming via mode-
directed tabling. Softw., Pract. Exper., 38(1):75-94, 2008.

12



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Carl Hewitt. Planner: A language for proving theorems in robots. In IJCAI, pages
295-302, 1969.

Henry A. Kautz and Bart Selman. Planning as satisfiability. In ECAI pages
359-363, 1992.

Robert Kowalski. Logic for Problem Solving. North Holland, Elsevier, 1979.
Vladimir Lifschitz. Answer set programming and plan generation. Artif. Intell.,
138(1-2):39-54, 2002.

Joo Raimundo and Ricardo Rocha. Global trie for subterms. In Proceedings of
CICLOPS, 2011.

C.R. Ramakrishnan. Model checking with tabled logic programming. In ALP News
Letter. ALP, 2002.

Jussi Rintanen. Planning as satisfiability: Heuristics. Artif. Intell., 193:45-86,
2012.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach (3rd
Edition). Prentice Hall, 2009.

David S. Warren. Memoing for logic programs. Comm. of the ACM, Special Section
on Logic Programming, 35:93-111, 1992.

David S. Warren. Interning ground terms in XSB. In Proceedings of CICLOPS,
2013.

Neng-Fa Zhou and Agostino Dovier. A tabled Prolog program for solving Sokoban.
Fundam. Inform., 124(4):561-575, 2013.

Neng-Fa Zhou and Jonathan Fruhman. Toward a dynamic programming solu-
tion for the 4-peg tower of Hanoi problem with configurations. In Proceedings of
CICLOPS, 2012.

Neng-Fa Zhou and Jonathan Fruhman. A User’s Guide to Picat, 2013.

Neng-Fa Zhou and Christian Theil Have. Efficient tabling of structured data with
enhanced hash-consing. TPLP, 12(4-5):547-563, 2012.

Neng-Fa Zhou, Yoshitaka Kameya, and Taisuke Sato. Mode-directed tabling for
dynamic programming, machine learning, and constraint solving. In ICTAI pages
213-218, 2010.

Neng-Fa Zhou, Taisuke Sato, and Yi-Dong Shen. Linear tabling strategies and
optimizations. TPLP, 8(1):81-109, 2008.

13



