Discrete Structures - Test 1 (Sample)

12:50-2:05, Oct 13, 2010 (Wednesday)

Name:	
1 (dill)	_

Answer all six questions.

Question 1 [4 points]

Let $A = \{1, 2, 3, 4, 5, 6, 7\}$. Give each of the following sets.

- 1. $B = \{ n \in A : n \text{ is odd} \}$
- 2. $C = \{n+4 : n \in A\}$
- 3. $D = B \cup C$
- 4. $E = B \cap C$
- 5. $F = B \setminus C$
- 6. $G = B \oplus C$
- 7. P(E) the power set of E
- 8. $E \times E$ the Cartesian product of E and E

Question 2 [3 points]

Use Venn diagrams to prove the De Morgan law $(A \cap B)^c = A^c \cup B^c$.

Question 3 [3 points]

Consider the function f(x)=2x+3 from Z to Z.

- 1. Is f one-to-one?
- 2. Is f onto Z?
- 3. Is f invertible? If so, what is the inverse function?
- 4. What is fof?

Question 4 [3 points]

Build the truth tables for $(\neg p \lor \neg q)$ and $\neg (p \land q)$.

Question 5 [3 points]

Prove that the sum of three consecutive integers is divisible by 3.

Question 6 [4 points]

Here is a proof by contradiction for the following theorem: If $p \lor (q \to r)$, $q \lor r$, and $r \to p$, then p. For each step, supply an explanation.

- 1. $p \lor (q \to r)$
- 2. $q \lor r$
- $3. \quad r \to p$
- 4. $\neg p$
- 5. $\neg r$
- 6. $r \lor q$
- 7. q
- 8. $q \rightarrow r$
- 9. r
- 10. $r \wedge \neg r$
- 11. contradiction