Data Structures - Midterm Exam

Please complete the exam and submit it as a plain text email with the subject "CISC 3130 Midterm Exam" to nzhou@brooklyn.cuny.edu by 4PM on Wednesday, March 24.

Question 1:

Consider the function f() defined below:

```java
static void f(LinkedList<Integer> alist){
    ListIterator<Integer> iter;
    while(alist.size() != 0) {
        iter = alist.listIterator();
        for(int j = 0 ; j < alist.size()-1; j++)
            iter.next();
        System.out.println(iter.next());
        iter.remove();
    }
}
```

Assume `alist` has values 1 2 9 8 10. What is the output of `f(alist)`?

Question 2:

Consider the following function f:

```java
static <T> void f(ArrayList<T> v) {
    int i, n;
    n = v.size();
    for (i = 1; i < n; i++){
        v.set(i, v.get(i-1));
    }
    v.remove(0);
    System.out.println(v);
}
```

Assume `v` has values <1, 2, 3, 4, 5>. What is the content of `v` after the function call `f(v)`?
Question 3:

Describe the behavior of the function \(f \) defined below.

```java
static <T> void f(T arr[]){
    int n = arr.length;
    LinkedList<T> s = new LinkedList<T>();
    int i;
    for (i = 0; i < n; i++)
        s.add(arr[i]);
    i = 0;
    while (!s.isEmpty()){
        arr[i] = s.poll();
        i++;
    }
}
```

Assume \(arr \) contains values \(<1, 5, 4, 3, 2>\). What is the content of \(arr \) after the function call \(f(arr) \)?

Question 4:

The function `createIntArray(n)` creates and returns an \(n \times n \) 2-dimensional array of integers, whose elements are:

\[
\begin{array}{cccc}
 n^2 & n^2-1 & \ldots & n^2-n+1 \\
 n(n-1) & n(n-1)-1 & \ldots & n(n-1)-n+1 \\
 \vdots & \vdots & \ddots & \vdots \\
 n & n-1 & \ldots & 1 \\
\end{array}
\]

For example, for \(n = 3 \), the returned array is:

\[
\begin{bmatrix}
 9 & 8 & 7 \\
 6 & 5 & 4 \\
 3 & 2 & 1
\end{bmatrix}
\]

Implement the function.

```java
int[][] createIntArray(int n);
```
Question 5:

Suppose that the roster of a course is represented as a LinkedList of Student objects, where the class Student is defined as follows:

```java
class Student implements Comparable<Student> {
    public String name;
    public String id;
    public float grade;

    Student(String name, String id, float g){
        this.name = name;
        this.id = id;
        grade = g;
    }

    public int compareTo(Student s){
        if (Math.abs(grade-s.grade) < 0.01)
            return 0;
        else if (grade > s.grade)
            return 1;
        else
            return -1;
    }
}
```

Implement a class, named Roster, that has the following specification:

```java
class Roster {
    LinkedList<Student> students;

    public Roster(){
        students = new LinkedList<>();
    }

    public void addStudent(Student stu);

    public void sort();

    public Pair<float, float> minMax();
}
```

1.1) The method addStudent adds a student to the roster.

1.2) The method sort() sorts the list of students by grade in descending order.

1.3) The method Pair<float, float> minMax() returns a pair whose first member is the lowest grade and second member is the highest grade of the roster.
Question 6:

The following gives two different implementations for removing duplicates from an array.

```java
static <E> removeDups1(ArrayList<E> lst){
    ArrayList<E> res = new ArrayList<>();
    for (E e: lst){
        if (!res.contains(e)){
            res.add(e);
        }
    }
    return res;
}

static <E> removeDups2(ArrayList<E> lst){
    ArrayList<E> res = new ArrayList<>();
    HashSet<E> s = new HashSet<>();
    for (E e: lst){
        if (!s.contains(e)){
            res.add(e);
            s.add(e);
        }
    }
    return res;
}
```

1. What are the best-case and worst-case time complexities of `removeDups1`?
2. What are the best-case and worst-case time complexities of `removeDups2`?
3. Write a function, named `removeConsecutiveDups`, that takes a sorted `ArrayList` and returns a copy of the array with consecutive duplicates removed. For example, for the array `{1,1,2,2,3}`, it returns `{1,2,3}`. Analyze the complexity of your algorithm.
Question 7:

The following function merges three ascendingly sorted lists:

```java
static <T extends Comparable<T>>
    LinkedList<T> merge(LinkedList<T> lst1, LinkedList<T> lst2, LinkedList<T> lst3);
```

1. Implement the function.

2. Implement a merge sort algorithm that uses this `merge` function. What are the worst-case and best-case time complexities of your algorithm?