
Inheritance in C++

Question 1 (from Ford & Topp)

Consider the following inheritance hierarchy:

class baseCL {

public:

baseCL();

void demoFunc();

private:

int m;

protected:

int n;

};

class derivedCL: public baseCL {

public:

derivedCL();

void demoFunc();

private:

int r;

};

(a) Which of the data members m, n, and r can be accessed by a member function in the
derived class?

(b) Which of the data members m, n, and r can be accessed by a member function in the base
class?

(c) Consider the declarations:

baseCL bObj;

derivedCL dObj;

Which of the objects bObj and dObj can execute demoFunc() in the base class? If valid,
give the C++ statement that provides the function call.

Which of the objects bObj and dObj can execute demoFunc() in the derived class? If
valid, give the C++ statement that provides the function call.

Question 2 (from Ford & Topp)

The given program illustrates the order in which classes in an inheritance hierarchy make
constructor and destructor calls. What is the output of the program?

#include <iostream>

using namespace std;

1



class baseCL {

public:

baseCL(){cout << "baseCL constructor" << endl;}

~baseCL(){cout << "baseCL desstructor" << endl;}

};

class derivedCL: public baseCL {

public:

derivedCL(){cout << "derivedCL constructor" << endl;}

~derivedCL(){cout << "derivedCL desstructor" << endl;}

};

int main(){

baseCL bObj;

derivedCL dObj;

return 0;

}

Question 3

Write a generic class, named Queue, in C++ for the queue type that uses a linked list to store
the elements. The Queue class has a member variable, named head, that references the first
node of the list, a member variable, named tail, that references the last node of the list, and
a member variable, named size, that stores the number of elements in the queue. The Queue

class provides all of the methods of the STL queue class, including push, pop, front, and
empty. The Node class is defined as follows.

template <typename T>

class Node {

public:

T nodeValue;

Node<T> *next;

Node (const T& item, Node<T> *ptr = NULL): nodeValue(item), next(ptr) {}

};

Write a class, named DerivedQueue, which extends Queue by providing a method named
emergency push that inserts an element at the front of the queue.

Question 4 (from Ford & Topp)

Use the employee hierarchy (see below) and the following statements for this problem:

employee boss("Mr. Boss", "111-222-333"), *p;

salaryEmployee sEmp("Steve Howard","896-54-3217",3330.00), *q = &sEmp;

2



hourlyEmployee hEmp("Johns Ross","896-54-3217",7.50,40), *r = &hEmp;

p = &sEmp;

Indicate the version of displayEmployeeInfo() that is executed by each of the following function
calls:

r->displayEmployeeInfo();

q->displayEmployeeInfo();

q->employee::displayEmployeeInfo();

p->displayEmployeeInfo();

// base class for all employees

class employee

{

public:

// constructor

employee(const string& name, const string& ssn) :

empName(name), empSSN(ssn)

{}

// output basic employee information

virtual void displayEmployeeInfo() const

{

cout << "Name: " << empName << endl;

cout << "Social Security Number: " << empSSN << endl;

}

// function with this prototype will exist in each derived class

virtual void payrollCheck() const

{}

protected:

// maintain an employee’s name and social

// security number

string empName;

string empSSN;

};

// salaried employee "is an" employee with a monthly salary

class salaryEmployee : public employee

{

public:

// initialize Employee attributes and monthly salary

salaryEmployee(const string& name,

const string& ssn, double sal):

employee(name,ssn),salary(sal)

{}

3



// update the monthly salary

void setSalary(double sal)

{ salary = sal; }

// call displayEmployeeInfo from base class and add

// information about the status (salaried) and weekly salary

void displayEmployeeInfo() const

{

employee::displayEmployeeInfo();

cout << "Status: salaried employee" << endl;

// cout << "Salary per week $" << setreal(1,2)

cout << "Salary per week $"

<< salary << endl;

}

// cut a payroll check with the employee name, social security

// number in angle brackets, and salary

virtual void payrollCheck() const

{

cout << "Pay " << empName << " (" << empSSN

// << ") $" << setreal(1,2) << salary << endl;

<< ") $" << salary << endl;

}

private:

// salary per pay period

double salary;

};

// hourly employee "is an" employee paid by the hour

class hourlyEmployee : public employee

{

public:

// initialize Employee attributes, hourly pay rate

// and hours worked

hourlyEmployee(const string& name, const string& ssn,

double hp, double hw) : employee(name,ssn),

hourlyPay(hp), hoursWorked(hw)

{}

// update the hourly pay and hours worked

void setHourlyPay(double hp)

{ hourlyPay = hp; }

void setHoursWorked(double hw)

{ hoursWorked = hw; }

4



// call displayEmployeeInfo from base class and output info

// on hourly rate and scheduled hours

void displayEmployeeInfo() const

{

employee::displayEmployeeInfo();

cout << "Status: hourly employee" << endl;

// cout << "Payrate: $" << setreal(1,2)

cout << "Payrate: $"

<< hourlyPay << " per hour" << endl;

cout << "Work schedule (hours per week) " << hoursWorked

<< endl;

}

virtual void payrollCheck() const

{

cout << "Pay " << empName << " (" << empSSN << ") $"

// << setreal(1,2) << (hourlyPay * hoursWorked) << endl;

<< (hourlyPay * hoursWorked) << endl;

}

private:

// pay based on hourly pay and hours worked

double hourlyPay;

double hoursWorked;

};

5


