
Inheritance in Java

Question 1

Consider the following inheritance hierarchy:

class BaseCL {

public BaseCL(){};

public void demoFunc(){};

private int m;

protected int n;

}

class DerivedCL extends BaseCL {

public DerivedCL(){};

public void demoFunc(){};

private int r;

}

(a) Which of the data members m, n, and r can be accessed by a member function in the
derived class?

(b) Which of the data members m, n, and r can be accessed by a member function in the base
class?

(c) Consider the test program:

class TestIn {

public static void main(String[] args){

BaseCL bObj = new BaseCL();

BaseCL dObj = new DerivedCL();

bObj.demoFunc();

dObj.demoFunc();

}

}

Which method does the method call bObj.demoFunc() invoke, and which method does
the method call dObj.demoFunc() invoke?

Question 2

Write a generic class, named Queue, in Java for the queue type that uses a linked list to store
the elements. The Queue class has a member variable, named head, that references the first
node of the list, a member variable, named tail, that references the last node of the list, and
a member variable, named size, that stores the number of elements in the queue. The Queue

class provides the following methods: push, pop, front, and empty. The Node class is defined
as follows.

1



class Node<T> {

public T nodeValue;

public Node<T> next;

Node(T item){

this(item, null);

}

Node(T item, Node<T> next){

nodeValue = item;

this.next = next;

}

}

Write a class, named DerivedQueue, which extends Queue by providing a method named
emergency push that inserts an element at the front of the queue.

Question 3

Use the employee hierarchy (see below) and indicate the version of displayEmployeeInfo() that
is executed by each of the method calls:

class TestEmployee {

public static void main(String[] args){

Employee p;

SalaryEmployee q = new SalaryEmployee("Steve Howard","896-54-3217",3330.00);

HourlyEmployee r = new HourlyEmployee("Johns Ross","896-54-3217",7.50,40);

p = q;

r.displayEmployeeInfo();

q.displayEmployeeInfo();

p.displayEmployeeInfo();

}

}

// base class for all employees

abstract class Employee {

public Employee(String name, String ssn){

empName = name;

empSSN = ssn;

}

// output basic employee information

void displayEmployeeInfo() {

System.out.println("Name: " + empName);

2



System.out.println("Social Security Number: " + empSSN);

}

// function with this prototype will exist in each derived class

abstract void payrollCheck();

protected String empName;

protected String empSSN;

}

// salaried employee "is an" employee with a monthly salary

class SalaryEmployee extends Employee {

// initialize Employee attributes and monthly salary

public SalaryEmployee(String name, String ssn, double sal){

super(name, ssn);

salary = sal;

}

// update the monthly salary

public void setSalary(double sal) {

salary = sal;

}

// call displayEmployeeInfo from base class and add

// information about the status (salaried) and weekly salary

public void displayEmployeeInfo(){

super.displayEmployeeInfo();

System.out.println("Status: salaried employee");

System.out.println("Salary per week $" + salary);

}

// cut a payroll check with the employee name, social security

// number in angle brackets, and salary

void payrollCheck(){

System.out.println("Pay " + empName + " (" + empSSN + ") $" + salary);

}

// salary per pay period

private double salary;

}

// hourly employee "is an" employee paid by the hour

class HourlyEmployee extends Employee {

// initialize Employee attributes, hourly pay rate

// and hours worked

public HourlyEmployee(String name, String ssn, double hp, double hw){

super(name,ssn);

hourlyPay = hp;

3



hoursWorked = hw;

}

// update the hourly pay and hours worked

public void setHourlyPay(double hp){

hourlyPay = hp;

}

public void setHoursWorked(double hw){

hoursWorked = hw;

}

// call displayEmployeeInfo from base class and output info

// on hourly rate and scheduled hours

public void displayEmployeeInfo(){

super.displayEmployeeInfo();

System.out.println("Status: hourly employee");

System.out.println("Payrate: $" + hourlyPay + " per hour");

System.out.println("Work schedule (hours per week) " + hoursWorked);

}

public void payrollCheck(){

System.out.println("Pay " + empName + " (" + empSSN + ") $" + (hourlyPay * hoursWorked));

}

// pay based on hourly pay and hours worked

private double hourlyPay;

private double hoursWorked;

}

4


