
Java GUI Libraries

Swing Programming

Swing Components

• Swing is a collection of libraries that contains
primitive widgets or controls used for designing
Graphical User Interfaces (GUIs).

• Commonly used classes in javax.swing package:
– JButton, JTextBox, JTextArea, JPanel, JFrame, JMenu,

JSlider, JLabel, JIcon, …
– There are many, many such classes to do anything

imaginable with GUIs
– Here we only study the basic architecture and do simple

examples

Swing components, cont.

• Each component is a Java class with a fairly extensive
inheritency hierarchy:

Object

Component

Container

JComponent

JPanel

Window

Frame

JFrame

Using Swing Components

• Very simple, just create object from
appropriate class – examples:
– JButton but = new JButton();
– JTextField text = new JTextField();
– JTextArea text = new JTextArea();
– JLabel lab = new JLabel();

• Many more classes. Don’t need to know
every one to get started.

• See ch. 9 Hortsmann

Adding components

• Once a component is created, it can be added to a
container by calling the container’s add method:

Container cp = getContentPane();

cp.add(new JButton(“cancel”));

cp.add(new JButton(“go”));

How these are laid out is determined by the layout
manager.

This is required

Laying out components

• Not so difficult but takes a little practice

• Do not use absolute positioning – not very
portable, does not resize well, etc.

Laying out components

• Use layout managers – basically tells form how to
align components when they’re added.

• Each Container has a layout manager associated
with it.

• A JPanel is a Container – to have different layout
managers associated with different parts of a form,
tile with JPanels and set the desired layout
manager for each JPanel, then add components
directly to panels.

Layout Managers

• Java comes with 7 or 8. Most common and
easiest to use are
– FlowLayout

– BorderLayout

– GridLayout

• Using just these three it is possible to attain
fairly precise layout for most simple
applications.

Setting layout managers

• Very easy to associate a layout manager with a
component. Simply call the setLayout method on
the Container:

JPanel p1 = new JPanel();
p1.setLayout(new FlowLayout(FlowLayout.LEFT));

JPanel p2 = new JPanel();
p2.setLayout(new BorderLayout());

As Components are added to the container, the layout
manager determines their size and positioning.

Event handling

What are events?

• All components can listen for one or more events.

• Typical examples are:
– Mouse movements

– Mouse clicks

– Hitting any key

– Hitting return key

– etc.

• Telling the GUI what to do when a particular
event occurs is the role of the event handler.

ActionEvent

• In Java, most components have a special
event called an ActionEvent.

• This is loosely speaking the most common
or canonical event for that component.

• A good example is a click for a button.
• To have any component listen for

ActionEvents, you must register the
component with an ActionListener. e.g.
– button.addActionListener(new MyAL());

Delegation, cont.

• This is referred to as the Delegation Model.
• When you register an ActionListener with a

component, you must pass it the class which
will handle the event – that is, do the work
when the event is triggered.

• For an ActionEvent, this class must
implement the ActionListener interface.

• This is simple a way of guaranteeing that
the actionPerformed method is defined.

actionPerformed

• The actionPerformed method has the following
signature:
void actionPerformed(ActionEvent)

• The object of type ActionEvent passed to the
event handler is used to query information about
the event.

• Some common methods are:
– getSource()

• object reference to component generating event

– getActionCommand()
• some text associated with event (text on button, etc).

actionPerformed, cont.

• These methods are particularly useful when
using one eventhandler for multiple
components.

Simplest GUI

import javax.swing.JFrame;
class SimpleGUI extends JFrame{

SimpleGUI(){
setSize(400,400); //set frames size in pixels
setDefaultCloseOperation(EXIT_ON_CLOSE);
show();

}

public static void main(String[] args){
SimpleGUI gui = new SimpleGUI();
System.out.println(“main thread coninues”);

}
}

Another Simple GUI
import javax.swing.*;
class SimpleGUI extends JFrame{

SimpleGUI(){
setSize(400,400); //set frames size in pixels
setDefaultCloseOperation(EXIT_ON_CLOSE);
JButton but1 = new JButton(“Click me”);
Container cp = getContentPane();//must do this

cp.add(but1);
show();

}

public static void main(String[] args){
SimpleGUI gui = new SimpleGUI();
System.out.println(“main thread coninues”);

}}

Add Layout Manager
import javax.swing.*; import java.awt.*;
class SimpleGUI extends JFrame{

SimpleGUI(){
setSize(400,400); //set frames size in pixels
setDefaultCloseOperation(EXIT_ON_CLOSE);
JButton but1 = new JButton(“Click me”);
Container cp = getContentPane();//must do this

cp.setLayout(new FlowLayout(FlowLayout.CENTER);
cp.add(but1);
show();

}

public static void main(String[] args){
SimpleGUI gui = new SimpleGUI();
System.out.println(“main thread coninues”);

}}

Add call to event handler
import javax.swing.*; import java.awt.*;
class SimpleGUI extends JFrame{

SimpleGUI(){
setSize(400,400); //set frames size in pixels
setDefaultCloseOperation(EXIT_ON_CLOSE);
JButton but1 = new JButton(“Click me”);
Container cp = getContentPane();//must do this

cp.setLayout(new FlowLayout(FlowLayout.CENTER);
but1.addActionListener(new MyActionListener());
cp.add(but1);
show();

}
public static void main(String[] args){

SimpleGUI gui = new SimpleGUI();
System.out.println(“main thread coninues”);

}}

Event Handler Code
class MyActionListener implements ActionListener{

public void actionPerformed(ActionEvent ae){
JOptionPane.showMessageDialog(“I got clicked”, null);

}

}

Add second button/event

class SimpleGUI extends JFrame{
SimpleGUI(){

/* */
JButton but1 = new JButton(“Click me”);
JButton but2 = new JButton(“exit”);
MyActionListener al = new MyActionListener();
but1.addActionListener(al);
but2.addActionListener(al);
cp.add(but1);
cp.add(but2);
show();

}
}

How to distinguish events –Less
good way

class MyActionListener implents ActionListener{
public void actionPerformed(ActionEvent ae){

if (ae.getActionCommand().equals(“Exit”){
System.exit(1);

}
else if (ae.getActionCommand().equals(“Click me”){

JOptionPane.showMessageDialog(null, “I’m clicked”);
}

}

Good way
class MyActionListener implents ActionListener{

public void actionPerformed(ActionEvent ae){
if (ae.getSource() == but2){

System.exit(1);
}
else if (ae.getSource() == but1){

JOptionPane.showMessageDialog(null, “I’m clicked”);
}

}

Question: How are but1, but2 brought into scope to do this?
Question: Why is this better?

Putting it all together

• See LoginForm.java example in class notes

