
CISC 3160
Programming Languages and Compilers

Topics
n Compilers

n Rregular expressions and context-free grammars
n Scanning and parsing
n run-time systems and memory management

n Programming paradigms
n Imperative programming, object-oriented programming,

functional programming, logic and constraint
programming, scripting languages, concurrent
programming

n Programming language examples
n Java, C/C++, Python, Haskell, and Picat

Resources

n Compilers: Principles, Techniques, and Tools (2nd Edition), by Alfred
V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman.

n Data Structures with C++ Using STL, 2nd ed., by - William H. Ford
and William R. Topp, Prentice-Hall.

n Java Online Tutorials
n OOP Wiki
n Introduction to Python, by Guido van Rossum
n A Gentle Introduction to Haskell, by Paul Hudak, John Peterson, and

Joseph Fasel.
n Constraint Solving and Planning with Picat, by Neng-Fa Zhou,

Hakan Kjellerstrand, and Jonathan Fruhman.

https://www.amazon.com/Compilers-Principles-Techniques-Tools-2nd/dp/0321486811
http://www1.pacific.edu/~wford/fordtopp/cs2book/cs2_index.html
http://www1.pacific.edu/~wford/fordtopp/cs2book/cs2_index.html
http://docs.oracle.com/javase/tutorial/
https://en.wikipedia.org/wiki/Object-oriented_programming
http://www.sci.brooklyn.cuny.edu/~zhou/teaching/cis7120/legacy.python.org/doc/essays/ppt/lwnyc2002/intro22.ppt
https://www.haskell.org/tutorial/
http://picat-lang.org/picatbook2015.html

Compilers

n “Compilation”
q Translation of a program written in a source

language into a semantically equivalent program
written in a target language

Compiler

Error messages

Source
Program

Target
Program

Input

Output

Interpreters

n “Interpretation”
q Performing the operations implied by the source

program

Interpreter

Source
Program

Input
Output

Error messages

Preprocessors, Compilers, Assemblers, and
Linkers

Preprocessor

Compiler

Assembler

Linker

Skeletal Source Program

Source Program

Target Assembly Program

Relocatable Object Code

Absolute Machine Code

Libraries and
Relocatable Object Files

Try for example:
gcc -S myprog.c
javap Class

by Neng-Fa Zhou

Analysis of Source Programs

lexical analyzer

syntax analyzer

semantic analyzer

source program

tokens

parse trees

parse trees

by Neng-Fa Zhou

Lexical Analysis

tokens

by Neng-Fa Zhou

Syntax Analysis

parse tree

by Neng-Fa Zhou

Semantic Analysis

type checking
type conversion

by Neng-Fa Zhou

Symbol Table

n There is a record for each identifier
n The attributes include name, type, location,

etc.

by Neng-Fa Zhou

Synthesis of Object Code

intermediate code generator

code optimizer

code generator

parse tree & symbol table

intermediate code

optimized intermediate code

target program

by Neng-Fa Zhou

Intermediate Code Generation

by Neng-Fa Zhou

Code Optimization

by Neng-Fa Zhou

Code Generation

27-Jan-25 COMP36512 Lecture 1 16

Qualities of a Good Compiler

What qualities would you want in a compiler?
q generates correct code (first and foremost!)
q generates fast code
q conforms to the specifications of the input language
q copes with essentially arbitrary input size, variables,

etc.
q compilation time (linearly)proportional to size of source
q good diagnostics
q consistent optimisations
q works well with the debugger

27-Jan-25 COMP36512 Lecture 1 17

Principles of Compilation
The compiler must:
n preserve the meaning of the program being compiled.
n “improve” the source code in some way.
Other issues (depending on the setting):
n Speed (of compiled code)
n Space (size of compiled code)
n Feedback (information provided to the user)
n Debugging (transformations obscure the relationship source code vs target)
n Compilation time efficiency (fast or slow compiler?)

27-Jan-25 COMP36512 Lecture 1 18

Why study Compilation Technology?
n Success stories (one of the earliest branches in CS)

q Applying theory to practice (scanning, parsing, static analysis)
q Many practical applications have embedded languages (eg, tags)

n Practical algorithmic & engineering issues:
q Approximating really hard (and interesting!) problems
q Emphasis on efficiency and scalability
q Small issues can be important!

n Ideas from different parts of computer science are involved:
n AI: Heuristic search techniques; greedy algorithms - Algorithms: graph

algorithms - Theory: pattern matching - Also: Systems, Architecture
n Compiler construction can be challenging and fun:

q new architectures always create new challenges; success requires
mastery of complex interactions; results are useful; opportunity to
achieve performance.

27-Jan-25 COMP36512 Lecture 1 19

Uses of Compiler Technology
n Most common use: translate a high-level program to object code

q Program Translation: binary translation, hardware synthesis, …
n Optimizations for computer architectures:

q Improve program performance, take into account hardware parallelism, etc…
n Automatic parallelisation or vectorisation
n Performance instrumentation: e.g., -pg option of cc or gcc
n Interpreters: e.g., Python, Ruby, Perl, Matlab, sh, …
n Software productivity tools

q Debugging aids: e.g, purify
n Security: Java VM uses compiler analysis to prove “safety” of Java code.
n Text formatters, just-in-time compilation for Java, power management, global

distributed computing, …
Key: Ability to extract properties of a source program (analysis) and

transform it to construct a target program (synthesis)

Exercises

