
CISC 3160 
Programming Languages and Compilers



Topics
n Compilers

n Rregular expressions and context-free grammars
n Scanning and parsing
n run-time systems and memory management

n Programming paradigms 
n Imperative programming, object-oriented programming, 

functional programming, logic and constraint 
programming, scripting languages, concurrent 
programming

n Programming language examples 
n Java, C/C++, Python, Haskell, and Picat 



Resources

n Compilers: Principles, Techniques, and Tools (2nd Edition), by Alfred 
V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman. 

n Data Structures with C++ Using STL, 2nd ed., by - William H. Ford 
and William R. Topp, Prentice-Hall.

n Java Online Tutorials
n OOP Wiki
n Introduction to Python, by Guido van Rossum 
n A Gentle Introduction to Haskell, by Paul Hudak, John Peterson, and 

Joseph Fasel. 
n Constraint Solving and Planning with Picat, by Neng-Fa Zhou, 

Hakan Kjellerstrand, and Jonathan Fruhman. 

https://www.amazon.com/Compilers-Principles-Techniques-Tools-2nd/dp/0321486811
http://www1.pacific.edu/~wford/fordtopp/cs2book/cs2_index.html
http://www1.pacific.edu/~wford/fordtopp/cs2book/cs2_index.html
http://docs.oracle.com/javase/tutorial/
https://en.wikipedia.org/wiki/Object-oriented_programming
http://www.sci.brooklyn.cuny.edu/~zhou/teaching/cis7120/legacy.python.org/doc/essays/ppt/lwnyc2002/intro22.ppt
https://www.haskell.org/tutorial/
http://picat-lang.org/picatbook2015.html


Compilers

n “Compilation”
q Translation of a program written in a source 

language into a semantically equivalent program 
written in a target language
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Interpreters

n “Interpretation”
q Performing the operations implied by the source 

program
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Preprocessors, Compilers, Assemblers, and 
Linkers

Preprocessor

Compiler

Assembler

Linker

Skeletal Source Program

Source Program

Target Assembly Program

Relocatable Object Code

Absolute Machine Code

Libraries and
Relocatable Object Files

Try for example:
gcc -S myprog.c
javap Class



by Neng-Fa Zhou

Analysis of  Source Programs

lexical analyzer

syntax analyzer

semantic analyzer

source program

tokens

parse trees

parse trees
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Lexical Analysis

tokens
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Syntax Analysis

parse tree
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Semantic Analysis

type checking
type conversion
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Symbol Table

n There is a record for each identifier
n The attributes include name, type, location, 

etc.
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Synthesis of  Object Code

intermediate code generator

code optimizer

code generator

parse tree & symbol table

intermediate code

optimized intermediate code

target program
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Intermediate Code Generation
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Code Optimization



by Neng-Fa Zhou

Code Generation
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Qualities of  a Good Compiler

What qualities would you want in a compiler?
q generates correct code (first and foremost!)
q generates fast code
q conforms to the specifications of the input language
q copes with essentially arbitrary input size, variables, 

etc.
q compilation time (linearly)proportional to size of source
q good diagnostics
q consistent optimisations
q works well with the debugger
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Principles of  Compilation
The compiler must:
n preserve the meaning of the program being compiled.
n “improve” the source code in some way.
Other issues (depending on the setting):
n Speed (of compiled code)
n Space (size of compiled code)
n Feedback (information provided to the user)
n Debugging (transformations obscure the relationship source code vs target)
n Compilation time efficiency (fast or slow compiler?)
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Why study Compilation Technology?
n Success stories (one of the earliest branches in CS)

q Applying theory to practice (scanning, parsing, static analysis)
q Many practical applications have embedded languages (eg, tags)

n Practical algorithmic & engineering issues:
q Approximating really hard (and interesting!) problems
q Emphasis on efficiency and scalability
q Small issues can be important!

n Ideas from different parts of computer science are involved:
n AI: Heuristic search techniques; greedy algorithms - Algorithms: graph 

algorithms - Theory: pattern matching - Also: Systems, Architecture
n Compiler construction can be challenging and fun:

q new architectures always create new challenges; success requires 
mastery of complex interactions; results are useful; opportunity to 
achieve performance.
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Uses of  Compiler Technology
n Most common use: translate a high-level program to object code

q Program Translation: binary translation, hardware synthesis, …
n Optimizations for computer architectures:

q Improve program performance, take into account hardware parallelism, etc…
n Automatic parallelisation or vectorisation
n Performance instrumentation: e.g., -pg option of cc or gcc
n Interpreters: e.g., Python, Ruby, Perl, Matlab, sh, …
n Software productivity tools

q Debugging aids: e.g, purify
n Security: Java VM uses compiler analysis to prove “safety” of Java code.
n Text formatters, just-in-time compilation for Java, power management, global 

distributed computing, …
Key: Ability to extract properties of a source program (analysis) and 

transform it to construct a target program (synthesis)



Exercises


