
by Neng-Fa Zhou 1

Evolution of programming
languages

– Machine language
– Assembly language
– Sub-routines and loop (Fortran)
– Procedures and recursion (Algol, Pascal, C)
– Modules (Modula-2, Ada)
– Objects (Simula, Smalltalk, C++,Java)
– Declarative programming languages (Prolog,

CLP, Lisp, ML, Haskall)

by Neng-Fa Zhou 2

Why are there so many languages

Evolution
– Procedural ® structural ® object-oriented

New paradigms and applications
– Logic languages (Prolog, CLP) for complex data and

knowledge processing
– Functional languages (Lisp, ML, Haskell) for symbolic

computation
– Scripting languages (JavaScript, Pearl, Tcl, Python,

Ruby, XSLT) for Web-based data processing
Personal preferences

by Neng-Fa Zhou 3

What makes a language
successful
Expressiveness
Availability of implementations
Efficiency
Productivity
Industrial sponsorships

by Neng-Fa Zhou 4

Why study programming
languages
Understand language features and concepts

at a higher level
Improve the ability to choose appropriate

languages
Increase the ability to learn new languages
Simulate useful features

by Neng-Fa Zhou 5

Why study language
implementation
Understand how languages are specified

and implemented
Understand obscure phenomena
Write better-style and efficient programs
Design and implement domain-specific

languages

by Neng-Fa Zhou 6

Programming language spectrum

Declarative
– Logic and constraint-based (Prolog, CLP(FD))
– Functional (Lisp/Scheme, ML, Haskell)
– Dataflow (Id, Val)
– Template-based (XSLT)
– Database (SQL)

 Imperative
– von Neumann (C, Ada, Fortran, Pascal,…)
– Scripting (Perl, Python, PHP,…)
– Object-oriented (Smalltalk, Effel, C++, Java, C#)

by Neng-Fa Zhou 7

Imperative

Features
– Variables are mnemonics of memory locations
– Assignment statements
– goto
– Iterative constructs

by Neng-Fa Zhou 8

Stack in C

typedef struct NodeStruct {
int val;
struct NodeStruct *next;

} Node, *NodePtr, *List;

typedef struct StackStruct {
int size;
List elms;

} Stack, *StackPtr;

by Neng-Fa Zhou 9

Stack in C (Cont.)
void stack_push(StackPtr s, int x){
s->size++;
lst_add(&s->elms,x);

}

int stack_pop(StackPtr s){
if (s->size==0){
error("empty stack");

} else {
s->size--;
return lst_remove(&s->elms);

}
}

by Neng-Fa Zhou 10

Object-oriented

Features
– Abstract data types
– Inheritance and overriding
– Polymorphism
– Dynamic binding

by Neng-Fa Zhou 11

Stack in Java
import java.util.LinkedList;
class MyStack {

private LinkedList<Integer> elms;

public MyStack() {
elms = new LinkedList<Integer>();

}
public void push(int x) {

elms.addFirst(x);
}
public int pop() {

if (elms.size()==0){
throw new RuntimeException("Empty stack");

} else return elms.removeFirst();
}

}

Stack in C#

by Neng-Fa Zhou 12

using System;
using System.Collections.Generic;

class MyStack {
private LinkedList<int> elms;

public MyStack() {
elms = new LinkedList<int>();

}
public void push(int x) {

elms.AddFirst(x);
}
public int pop() {

if (elms.Count==0){
throw new System.Exception("stack underflow");

} else {
int tmp = elms.First.Value;
elms.RemoveFirst();
return tmp;

}
}

by Neng-Fa Zhou 13

Stack in C++
class Stack {
public:

Stack();
void push(int);
int pop();

private:
list<int> elms;

};

Stack::Stack(){
}

void Stack::push(int x){
elms.push_front(x);

}

int Stack::pop(){
assert(!elms.empty());
int x = elms.front();
elms.pop_front();
return x;

}

by Neng-Fa Zhou 14

Functional

Features
– Single assignment variables (no side effects)
– Recursion
– Rule-based and pattern matching (ML, Haskell)
– High-order functions
– Lazy evaluation (Haskell)
– Meta-programming (Scheme)

by Neng-Fa Zhou 15

Stack in Scheme
(define stack_push

(lambda (s x) (cons x s)))

(define stack_peek
(lambda (s) (if (eq? s ())

(raise "empty stack")
(car s))))

(define stack_pop
(lambda (s) (if (eq? s ())

(raise "empty stack")
(cdr s))))

by Neng-Fa Zhou 16

Stack in Haskell

stack_push s x = (x:s)

stack_peek (x:_) = x

stack_pop (_:s) = s

by Neng-Fa Zhou 17

Stack in SML/NJ
fun stack_push s x = (x::s)

fun stack_peek (x::s) = x

fun stack_pop (_::s) = s

by Neng-Fa Zhou 18

F#
let stack_push s x = x :: s

let stack_peek s =
match s with
| x :: _ -> x

let stack_pop s =
match s with
| _ ::s1 -> s1

by Neng-Fa Zhou 19

Logic & constraint-based

Features
– Logic variables
– Recursion
– Unification
– Backtracking
– Meta-programming

by Neng-Fa Zhou 20

Stack in Prolog

stack_push(S,X,[X|S]).

stack_pop([X|S],X,S).

by Neng-Fa Zhou 21

Stack in Picat

stack_push(S,X) = [X|S].

stack_peek([X|_]) = X.

stack_pop([_|S]) = S.

by Neng-Fa Zhou 22

Implementation methods
Compilation

– Translate high-level program to machine code
• Slow translation
• Fast execution

Pure interpretation
– No translation

• Slow execution
• Becoming rare

Hybrid implementation systems
– Small translation cost
– Medium execution speed

by Neng-Fa Zhou 23

Review questions

Why are there so many programming languages?
What makes a programming language successful?
Why is it important to study programming

languages?
Name two languages in each of the following

paradigms: procedural, OOP, logic, and
functional.

What are the features of OOP languages?
What are the features of functional languages?
What are the features of logic languages?

