
CSCI-GA.2130-001

Compiler Construction

Lecture 11:
Run-Time Environment

Hubertus Franke

frankeh@cs.nyu.edu

What Are We Talking About
Here?

• How do your code and data look like
during execution?

• Interaction among compiler, OS, and
target machine

• The main two themes:
– Allocation of storage locations

– Access to variables and data

Logic Address

Space of the

Executing

Program

Physical Address

Space
OS

Compiler-writer Perspective

DLL
DLL

Loader

Source Code to Execution

Assembly
Assembler Object File

Object File
Object File

Assembly
Assembly

Executable

Linker
Library
Library
Library

Assembly
Assembly
C source

Compiler

DLL

Typical Memory Subdivision

Stack Allocation

• For managing procedure calls

• Stack grows with each call and shrinks
with each procedure return/terminate

• Each procedure call pushes an activation
record into the stack

activation tree

Activation Tree

• Models procedure activations

• The main is the root
• Children of the same parent are
executed in sequence from left to right

• Sequence of procedure calls -> preorder
traversal of activation tree

• Sequence of procedure returns ->
postorder traversal of activation tree

Activation Records

• What is pushed into the stack for each
procedure activation

• Contents vary with the language being
implemented

General Activation Record

Code Generation

• Calling sequence
– Code that allocates activation record

– Code for entering information in it

• Return sequence
– Code to restore the state of the machine

Variable Length Data

• What if size of local array can not be determined at compile time?

• Allocate <ptr>

• Allocate array[] at runtime
(grow stack at runtime)

• ptr = array

• alloca() is an example in C

Data Access (non-nested)

• Simple distinction between local and global

• Access method for local variables:
• Stack relative: variable is synonymous with relative

location of the activation record (+/- offset to stack)

• ldw r4, sp(-16) % parameter

• ldw r3, sp(8) % local variable

Data Access (non-nested)

• Access method for global variables:
• Compiler determines relative address of variable wrt

to module/file into .data/.bss segment

• Linker merges all segments into a single segment and
changes the offsets -> leads to global address

• Special handling of dynamically loaded modules

Non-Local Data Access
(nested procedures)

Nested Procedure with functions
as parameters

Function Parameter must carry as “hidden parameter” the access link

Code must generated to install the link as part of the call

ABI: Application Binary Interface

• An Application Binary Interface (ABI)
specifies an interface for compiled
application programs to system software

• The “contract” that specifies
– how functions are called

– how parameters are passed

– how the linkage is defined

- what assumption can be made (and not)

PowerPC ABI

• Register Usage Convention

PowerPC ABI

• Datatypes

• Function Call
Prologue

Epilogue

PowerPC ABI
• Stack Frame Convention

X86-64 ABI

• Stacks are aligned @ 16bytes

X86-64

Heap Management

• Heap: portion of the store used for
data that lives indefinitely

• Memory manager: subsystem
responsible for (de)allocation of space
within the heap

• Garbage collection: process of finding
spaces within the heap that are no
longer used and reallocate them to
other data items

Memory Manager

• Keeps track of all the free space in heap
at all time

• Allocation
– Interaction with OS

• Deallocation
• Desired properties:
– Space efficiency: minimize total heap space
needed by programs

– Program efficiency: making good use of
memory subsystem

– Low overhead: of (de)allocation processes

Heap Fragmentation

• Due to allocation/deallocation

• Why is it bad?

• How to deal with it?
– Best fit

– First fit

– Next fit

–Worst fit

Garbage Collection

• Garbage: data that cannot be
referenced

• Garbage collection: reclamation of
garbage from heap

Assumptions

• Objects have a type that can be
determined by garbage collector at run-
time.

• References to objects are always to the
address of the beginning of the object.

Performance Metrics

• Overall execution time: garbage
collection can be very slow

• Space usage: must avoid fragmentation

• Maximum pause time must be minimized

• Program locality

Reference-Counting
Garbage Collection

• Every object must have a field for
reference count

• This field counts the number of
references to the object

• If count reaches zero, the object is
deleted

Mark-and-Sweep

• Visit every object

• Mark object

• All unmarked objects are unreachable
» Can be deleted

Mark-and-Compact

• Variation of Mark-and-Sweep

• Copy remaining objects into small
contiguous area

• Why?

• In place compaction

Copying collectors

• Compacting at one end of the heap

Others

• Incremental Garbage Collectors

• Generational Garbage Collectors

So

• Skim: 7.3, 7.5.2, 7.6, 7.7, and 7.8

• Read: the rest of chp 7

