

The Role of the Parser

- Construct a parse tree

Report and recover from errors
Collect information into symbol tables

Context-free Grammars

$$
\mathrm{G}=(\Sigma, \mathrm{N}, \mathrm{P}, \mathrm{~S})
$$

- Σ is a finite set of terminals
- N is a finite set of non-terminals
- P is a finite subset of production rules
- S is the start symbol

CFG: Examples

Arithmetic expressions

$$
\begin{aligned}
& \mathrm{E}::=\mathrm{T}|\mathrm{E}+\mathrm{T}| \mathrm{E}-\mathrm{T} \\
& \mathrm{~T}::=\mathrm{F}|\mathrm{~T} * \mathrm{~F}| \mathrm{T} / \mathrm{F} \\
& \mathrm{~F}::=\mathrm{id} \mid(\mathrm{E})
\end{aligned}
$$

Statements
IfStatement $::=$ if E then Statement else Statement

CFG vs. Regular Expressions

CFG is more expressive than RE

- Every language that can be described by regular expressions can also be described by a CFG

Example languages that are CFG but not RE

- if-then-else statement, $\left\{a^{n} b^{n} \mid n>=1\right\}$

Non-CFG

$$
\begin{aligned}
& -\mathrm{L} 1=\left\{\mathrm{wcw} \mid \mathrm{w} \text { is in }(\mathrm{a} \mid \mathrm{b})^{*}\right\} \\
& -\mathrm{L} 2=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{m}} \mathrm{c}^{\mathrm{n}} \mathrm{~d}^{\mathrm{m}} \psi \mathrm{n}^{\mathrm{n}}=\mathrm{q}^{\text {noo}} \text { and } \mathrm{m}>=1\right\}
\end{aligned}
$$

Derivations

$$
\begin{aligned}
& \alpha A \beta \Rightarrow \alpha \gamma \beta \text { if } A::=\gamma \\
& \alpha \stackrel{*}{\Longleftrightarrow} \alpha \\
& \alpha \stackrel{*}{\Longleftrightarrow} \beta \text { and } \beta \Rightarrow \gamma \text { then } \alpha \stackrel{*}{\Rightarrow} \gamma
\end{aligned}
$$

$$
\mathrm{S} \stackrel{*}{\longleftrightarrow} \alpha \quad\left\{\begin{array}{l}
\alpha \text { is a sentential form } \\
\alpha \text { is a sentence if it contains } \\
\text { only terminal symbols }
\end{array}\right.
$$

Derivations

leftmost derivation

$$
\alpha \mathrm{A} \beta \Rightarrow \alpha \gamma \beta \quad \text { if } \alpha \text { is a string of terminals }
$$

Rightmost derivation

$$
\alpha \mathrm{A} \beta \Rightarrow \alpha \gamma \beta \quad \text { if } \beta \text { is a string of terminals }
$$

Parse Trees

A parse tree is any tree in which

- The root is labeled with S
- Each leaf is labeled with a token a or ε
- Each interior node is labeled by a nonterminal
- If an interior node is labeled A and has children labeled $\mathrm{X} 1, . . \mathrm{Xn}$, then $\mathrm{A}::=\mathrm{X} 1 \ldots \mathrm{Xn}$ is a production.

Parse Trees and Derivations

$$
\begin{aligned}
& \mathrm{E}::=\mathrm{E}+\mathrm{E}|\mathrm{E} * \mathrm{E}| \mathrm{E}-\mathrm{E}|-\mathrm{E}|(\mathrm{E}) \mid \text { id } \\
& E \quad \Rightarrow \quad,{ }^{E} \searrow_{E}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow
\end{aligned}
$$

Ambiguity

A grammar that produces more than one parse tree for some sentence is said to be ambiguous.

(a)

(b)

Eliminating Ambiguity

Rewrite productions to take the precedence of operators into account

```
stmt ::= matched_stmt 
    unmatched_stmt
matched_stmt ::= if E then matched_stmt else matched_stmt 
    other
unmatched_stmt ::= if E then stmt 
                                    if E then matched_stmt else unmatched_stmt
```


Eliminating Left-Recursion

Direct left-recursion

$$
\begin{aligned}
\mathrm{A}::= & \mathrm{A} \alpha \mid \beta & \mathrm{A}::=\mathrm{A} \alpha 1|\ldots| \mathrm{A} \alpha \mathrm{~m}|\beta 1| \ldots \mid \beta \mathrm{n} \\
& \downarrow & \downarrow \\
& & \\
\mathrm{~A}::=\beta \mathrm{A}^{\prime} & & \mathrm{A}::=\beta 1 \mathrm{~A}^{\prime}|\ldots| \beta \mathrm{nA}^{\prime} \\
\mathrm{A}^{\prime}::=\alpha \mathrm{A}^{\prime} \mid \varepsilon & & \mathrm{A}^{\prime}::=\alpha 1 \mathrm{~A}^{\prime}|\ldots| \alpha \mathrm{nA}^{\prime} \mid \varepsilon
\end{aligned}
$$

Eliminating Indirect Left-

 Recursion
Indirect left-recursion

$$
\begin{aligned}
& \mathrm{S}::=\mathrm{Aa} \mid \mathrm{b} \\
& \mathrm{~A}::=\mathrm{Ac}|\mathrm{Sd}| \varepsilon
\end{aligned}
$$

Algorithm

Arrange the nonterminals in some order $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$. for (i in 1..n) \{ for (j in 1..i-1) \{ replace each production of the form $\mathrm{A}_{\mathrm{i}}::=\mathrm{A}_{\mathrm{j}} \gamma$ by the productions $\mathrm{A}_{\mathrm{i}}::=\delta_{1} \gamma\left|\delta_{2} \gamma\right| \ldots \mid \delta_{\mathrm{k}} \gamma$ where

$$
\mathrm{A}_{\mathrm{j}}::=\delta_{1}\left|\delta_{2}\right| \ldots \mid \delta_{\mathrm{k}}
$$

\}
eliminate the immediate left recursion among A_{i} productions

Left Factoring

$$
\mathrm{A}::=\alpha \beta 1|\ldots| \alpha \beta \mathrm{n} \mid \gamma
$$

$$
\begin{aligned}
& \mathrm{A}::=\alpha \mathrm{A}^{\prime} \mid \gamma \\
& \mathrm{A}^{\prime}::=\beta 1|\ldots| \beta \mathrm{n}
\end{aligned}
$$

Top-Down Parsing

Start from the start symbol and build the parse tree top-down
包 Apply a production to a nonterminal. The right-hand of the production will be the children of the nonterminal

Match terminal symbols with the input
四 May require backtracking
Some grammars are backtrack-free (predictive)

Construct Parse Trees Top-Down

- Start with the tree of one node labeled with the start symbol and repeat the following steps until the fringe of the parse tree matches the input string
- 1. At a node labeled A, select a production with A on its LHS and for each symbol on its RHS, construct the appropriate child
- 2. When a terminal is added to the fringe that doesn't match the input string, backtrack
- 3. Find the next node to be expanded
- ! Minimize the number of backtracks

Example

Left-recursive

$$
\begin{aligned}
\mathrm{E}::= & \mathrm{T} \\
& \mid \mathrm{E}+\mathrm{T} \\
& \mid \mathrm{E}-\mathrm{T} \\
\mathrm{~T}::= & \mathrm{F} \\
& \mid \mathrm{T} * \mathrm{~F} \\
& \mid \mathrm{T} / \mathrm{F} \\
\mathrm{~F}::= & \text { id } \\
& \mid \text { number } \\
& \mid(\mathrm{E})
\end{aligned}
$$

Right-recursive

$$
\begin{array}{rlrl}
\mathrm{E}::= & & \mathrm{TE} \mathrm{E}^{\prime} \\
\mathrm{E}^{\prime}:= & & +\mathrm{TE} \mathrm{E}^{\prime} \\
& \mid-\mathrm{T} \mathrm{E} \\
& \\
& \mid \mathrm{e} \\
\mathrm{~T}::= & \mathrm{FT} \mathrm{~T}^{\prime} \\
\mathrm{T}^{\prime}::= & * \mathrm{~F} \mathrm{~T}^{\prime} \\
& \mid / \mathrm{F} \mathrm{~T}^{\prime} \\
& \mid \mathrm{e} \\
\mathrm{~F}::= & \mathrm{id}
\end{array}
$$

$$
\begin{equation*}
X_{\text {by }} \text { Reng- }_{*}^{*} \mathrm{~V}_{\text {I hou }} \tag{E}
\end{equation*}
$$

| number

Control Top-Down Parsing

- Heuristics
- Use input string to guide search

Backtrack-free search

- Lookahead is necessary
- Predictive parsing

Predictive Parsing FIRST and FOLLOW

FIRST(X)

- If X is a terminal
- $\operatorname{FIRST}(\mathrm{X})=\{\mathrm{X}\}$
- If X::= ε
- Add ε to FIRST(X)
- If X:: $=\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{k}}$
- $\operatorname{Add} \operatorname{FIRST}\left(\mathrm{Y}_{\mathrm{i}}\right)$ to $\operatorname{FIRST}(\mathrm{X})$ if $\mathrm{Y}_{1} \ldots \mathrm{Y}_{\mathrm{i}-1}=>^{*} \varepsilon$
- $\operatorname{Add} \varepsilon$ to $\operatorname{FIRST}(\mathrm{X})$ if $\mathrm{Y}_{1} \ldots \mathrm{Y}_{\mathrm{k}}=>* \varepsilon$

Predictive Parsing FIRST and FOLLOW

FOLLOW(X)

- Add \$ to FOLLOW(S)
- If $A::=\alpha B \beta$
- Add everything in $\operatorname{FIRST}(\beta)$ except for ε to FOLLOW(B)
- If $A::=\alpha B \beta\left(\beta=>^{*} \varepsilon\right)$ or $A::=\alpha B$
- Add everything in FOLLOW(A) to FOLLOW(B)

Recursive Descent Parsing

```
match(expected_token){
    if (input_token != expected_token)
        error();
    else
        input_token = next_token();
}
main(){
    input_token = next_token();
    exp();
    match(EOS);
}
exp(){
    switch (input_token) {
    case ID, NUM, L_PAREN:
        term();
        exp_prime();
        return;
    default:
    error();
    }
}
```

```
exp_prime(){
```

exp_prime(){
switch (input_token){
switch (input_token){
case PLUS:
case PLUS:
match(PLUS);
match(PLUS);
term();
term();
exp_prime();
exp_prime();
break;
break;
case MINUS:
case MINUS:
match(MINUS);
match(MINUS);
term();
term();
exp_prime();
exp_prime();
break;
break;
case R_PAREN,EOS:
case R_PAREN,EOS:
break;
break;
default:
default:
error();
error();
}
}
}

```
}
```

Top-Down Parsing (Nonrecursive predictive parser)

Top-Down Parsing

 (Nonrecursive predictive parser) set $i p$ to point to the first symbol of $w \$$; repeatlet X be the top stack symbol and a the symbol pointed to by $i p$; if X is a terminal or $\$$ then
if $X=a$ then
pop X from the stack and advance ip
else error ()
parsing table
else
$1 * X$ is a nonterminal * t
if $M[X, a]=X \rightarrow Y_{1} Y_{2} \cdots Y_{k}$ then begin
pop X from the stack;
push $Y_{k}, Y_{k-1}, \ldots, Y_{1}$ onto the stack, with Y_{1} on top; output the production $X \rightarrow Y_{1} Y_{2} \cdots Y_{k}$
end
else error ()
until $X=\$ \quad / *$ stack is empty */

Example

Stack	Input	Output
\$E	id + id * id\$	
\$ $E^{\prime} T$	id + id * id\$	$E \rightarrow T E^{\prime}$
\$ $E^{\prime} T^{\prime} F$	id + id * id\$	$T \rightarrow F T^{\prime}$
\$ $E^{\prime} T^{\prime} \mathrm{id}$	id + id * id \$	$F \rightarrow$ id
\$ $E^{\prime} T^{\prime}$	+ id * id\$	
\$ E^{\prime}	+ id * id\$	$T^{\prime} \rightarrow \boldsymbol{\epsilon}$
\$ $E^{\prime} T+$	+ id * id\$	$E^{\prime} \rightarrow+T E^{\prime}$
\$ $E^{\prime} T$	id * id\$	
\$ $E^{\prime} T^{\prime} F$	id * id\$	$T \rightarrow F T^{\prime}$
$\$ E^{\prime} T^{\prime}$ id	id * id\$	$F \rightarrow$ id
\$ $E^{\prime} T^{\prime}$	* id\$	
\$ $E^{\prime} T^{\prime} F *$	* id\$	$T^{\prime} \rightarrow * F T^{\prime}$
\$ $E^{\prime} T^{\prime} F$	id\$	
$\$ E^{\prime} T^{\prime} \mathrm{id}$	id\$	$F \rightarrow$ id
$\$ E^{\prime} T^{\prime}$	\$	
\$ E^{\prime}	\$	$T^{\prime} \rightarrow \boldsymbol{\epsilon}$
\$	\$	$E^{\prime} \rightarrow \epsilon$

Parsing Table Construction

for each production $p=(\mathrm{A}::=\alpha)\{$
for each terminal a in $\operatorname{FIRST}(\alpha)$, add p to M[A, $a]$;
if ε is in $\operatorname{FIRST}(\alpha)$
for each terminal b (including \$) in FOLLOW(A) add p to $\mathrm{M}[\mathrm{A}, b]$;

Example

$$
\begin{array}{ll}
\mathrm{E}::=\mathrm{E}+\mathrm{T} \mid \mathrm{T} & \mathrm{E}::=\mathrm{TE}^{\prime} \\
\mathrm{T}::=\mathrm{T}^{*} \mathrm{~F} \mid \mathrm{F} & \mathrm{E}^{\prime}::=+\mathrm{TE}^{\prime} \mid \mathrm{e} \\
\mathrm{~F}::=(\mathrm{E}) \mid \mathrm{id} & \mathrm{~T}::=\mathrm{FT}^{\prime} \\
& \mathrm{T}^{\prime}::=\mathrm{FT}^{\prime} \mid \mathrm{e} \\
& \mathrm{~F}::=\text { (E) } \mid \text { id }
\end{array}
$$

NONTER-	INPUT SYMBOL					
MINAL	id	+	$*$	$($	$)$	$\$$
E	$E \rightarrow T E^{\prime}$			$E \rightarrow T E^{\prime}$		
E^{\prime}		$E^{\prime} \rightarrow+T E^{\prime}$			$E^{\prime} \rightarrow \epsilon$	$E^{\prime} \rightarrow \epsilon$
T	$T \rightarrow F T^{\prime}$			$T \rightarrow F T^{\prime}$		
T^{\prime}		$T^{\prime} \rightarrow \epsilon$	$T^{\prime} \rightarrow * F T^{\prime}$		$T^{\prime} \rightarrow \epsilon$	$T^{\prime} \rightarrow \epsilon$
F	$F \rightarrow$ id			$F \rightarrow(E)$		

LL(1) Grammar

A grammar is said to be $\operatorname{LL}(1)$ if $|\mathrm{M}[\mathrm{A}, \mathrm{a}]|<=1$ for each nonterminal A and terminal a.

Example (non-LL(1) grammar)

$\mathrm{S}::=\mathrm{iEtS}|\mathrm{iEtSeS}| \mathrm{a}$
$\mathrm{E}::=\mathrm{b}$

$$
\begin{aligned}
& \mathrm{S}::=\mathrm{iEtSS} \mathrm{I}^{\mathrm{a}} \\
& \mathrm{~S}^{\prime}::=\mathrm{eS} \mid \varepsilon \\
& \mathrm{E}::=\mathrm{b}
\end{aligned}
$$

Bottom-Up Parsing

Start from the input sequence of tokens
Apply a production to the sentential form and rewrite it to a new one

Keep track of the current sentential form

Construct Parse Trees Bottom-Up

$1 . \alpha=$ the given string of tokens;
2. Repeat (reduction)
2.1 Matches the RHS of a production with a substring of α
2.2 Replace RHS with the LHS of the production until no production rule applies (backtrack) or α becomes the start symbol (success);

Example

Control Bottom-Up Parsing

Handle

- A substring that matches the right side of a production
- Applying the production to the substring results in a right-sentential form, i.e., a sentential form occurring in a right-most derivation

Example

$$
\begin{aligned}
& \mathrm{E}::=\mathrm{E}+\mathrm{E} \\
& \mathrm{E}::=\mathrm{E}^{*} \mathrm{E} \\
& \mathrm{E}::=(\mathrm{E}) \\
& \mathrm{E}::=\mathrm{id}
\end{aligned}
$$

Bottom-Up Parsing Shift-Reduce Parsing

push '\$' onto the stack;
token $=$ nextToken();
repeat
if (there is a handle $A::=\beta$ on top of the stack) $\{$ reduce β to $\mathrm{A} ; /{ }^{*}$ reduce */ pop β off the stack; push A onto the stack;
\} else \{/* shift */
shift token onto the stack;
token $=$ nextToken();
\}
until (top of stack is S and token is eof)

Example

	STACK	INPUT	ACTION
(1)	$\$$	$\mathbf{i d}_{1}+\mathbf{i d}_{2} * \mathbf{i d}_{3} \$$	shift
(2)	$\$ \mathbf{i d}_{1}$	$+\mathbf{i d}_{2} * \mathbf{i d}_{3} \$$	reduce by $E \rightarrow \mathbf{i d}$
(3)	$\$ E$	$+\mathbf{i d}_{2} * \mathbf{i d}_{3} \$$	shift
(4)	$\$ E+$	$\mathbf{i d}_{2} * \mathbf{i d}_{3} \$$	shift
(5)	$\$ E+\mathbf{i d}_{2}$	$* \mathbf{i d}_{3} \$$	reduce by $E \rightarrow \mathbf{i d}$
(6)	$\$ E+E$	$* \mathbf{i d}_{3} \$$	shift
(7)	$\$ E+E *$	$\mathbf{i d}_{3} \$$	shift
(8)	$\$ E+E * \mathbf{i d}_{3}$	$\$$	reduce by $E \rightarrow \mathbf{i d}$
(9)	$\$ E+E * E$	$\$$	reduce by $E \rightarrow E * E$
(10)	$\$ E+E$	$\$$	reduce by $E \rightarrow E+E$
(11)	$\$ E$	$\$$	accept

A Problem in Shift-Reduce Parser

The stack has to be scaned to see whether a handle appears on it.

Use a state to uniquely identify a part of a handle (viable prefix) so that stack scanning becomes unnecessary

by Neng-Fa Zhou

LR Parsing Program

set $i p$ to point to the first symbol of $w \$$;

 repeat forever beginlet s be the state on top of the stack and a the symbol pointed to by $i p$;
if action $[s, a]=\operatorname{shift} s^{\prime}$ then begin push a then s^{\prime} on top of the stack; advance $i p$ to the next input symbol
end
else if action $[s, a]=$ reduce $A \rightarrow \beta$ then begin pop $2 *|\beta|$ symbols off the stack; let s^{\prime} be the state now on top of the stack; push A then goto $\left[s^{\prime}, A\right]$ on top of the stack; output the production $A \rightarrow \beta$
end
else if action $[s, a]=$ accept then return
else error ()

Example

(1) $\mathrm{E}::=\mathrm{E}+\mathrm{T}$
(2) $\mathrm{E}::=\mathrm{T}$
(3) $\mathrm{T}::=\mathrm{T} * \mathrm{~F}$
(4) $T::=F$
(5) $\mathrm{F}::=(\mathrm{E})$
(6) $\mathrm{F}::=\mathrm{id}$
id * id +id

STATE	action								
	id	+	$*$	$($	$)$	$\$$	E	T	F
0	s5			$s 4$			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

by Neng-Fa Zhou

LR Grammars

LR grammar

- A grammar is said to be an LR grammar if we can construct a parsing table for it.
埌 $\mathrm{LR}(\mathrm{k})$ grammar
- lookahead of up to k input symbols

罰 $\operatorname{SLR}(1)$, LR(1), and LALR(1) grammars

SLR Parsing Tables

皿 $\mathrm{LR}(0)$ item

- A production with a dot at some position of the RHS

$$
\begin{aligned}
\mathrm{A}::=\bullet \mathrm{XYZ} & \text { we are expecting } \mathrm{XYZ} \\
\mathrm{~A}::=\mathrm{X} \cdot \mathrm{YZ} & \\
\mathrm{~A}::=\mathrm{XY} \cdot \mathrm{Z} & \\
\mathrm{~A}::=\mathrm{XYZ} & \text { we have seen } \mathrm{XYZ}
\end{aligned}
$$

Closure of a Set of Items I

function closure (I);

 begin$$
J:=I
$$

repeat
for each item $A \rightarrow \alpha \cdot B \beta$ in J and each production

$$
B \rightarrow \gamma \text { of } G \text { such that } B \rightarrow \gamma \text { is not in } J \text { do }
$$

$$
\text { add } B \rightarrow \gamma \text { to } J
$$

until no more items can be added to J; return J
end

Closure of a Set of Items I Example

$$
\begin{aligned}
& \mathrm{E}^{\prime}::=\mathrm{E} \\
& \mathrm{E}::=\mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T}::=\mathrm{T}^{*} \mathrm{~F} \mid \mathrm{F} \\
& \mathrm{~F}::=(\mathrm{E}) \mid \mathrm{id}
\end{aligned}
$$

$$
\text { closure }\left(\left\{E^{\prime}::=\bullet E\right\}\right)=?
$$

The goto Operation

$\operatorname{goto}(\mathrm{I}, \mathrm{X})=\operatorname{closure}(\{\mathrm{A}::=\alpha \mathrm{X} \cdot \beta \mid \mathrm{A}::=\alpha \cdot \mathrm{X} \beta$ is in I$\})$
Example

$$
\begin{aligned}
& \mathrm{I}=\left\{\mathrm{E}^{\prime}::=\mathrm{E} \bullet, \mathrm{E}::=\mathrm{E} \bullet+\mathrm{T}\right\} \\
& \operatorname{goto}(\mathrm{I},+)=?
\end{aligned}
$$

Canonical LR(0) Collection of

 Set of Items
procedure items (G^{\prime});

begin

$$
C:=\left\{\operatorname{closure}\left(\left\{\left[S^{\prime} \rightarrow \cdot S\right]\right\}\right)\right\} ;
$$

repeat

for each set of items I in C and each grammar symbol X such that $\operatorname{goto}(I, X)$ is not empty and not in C do

$$
\text { add } \operatorname{goto}(I, X) \text { to } C
$$

until no more sets of items can be added to C

Constructing SLR Parsing Table

1. Construct $\mathrm{C}=\{\mathrm{I} 0, \mathrm{I} 1, \ldots, \mathrm{In}\}$, the collection of sets of $\operatorname{LR}(0)$ items for G^{\prime} (augmented grammar).
2. If $[A \rightarrow \alpha \bullet a \beta]$ is in Ii where a is a terminal and $\operatorname{goto}(\mathrm{Ij}, \mathrm{a})=\mathrm{Ij}$, the set action $[\mathrm{i}, \mathrm{a}]$ to "shift j ".
3. If $[S$ ' $\rightarrow \mathrm{S} \bullet]$ is in Ii, then set action $[i, \$]$ to "accept".
4. If $[\mathrm{A} \rightarrow \alpha \bullet]$ is in Ii, then set action $[\mathrm{i}, \mathrm{a}]$ to "reduce $\mathrm{A} \rightarrow \alpha$ " for all a in FOLLOW(A).

Example

(1) $\mathrm{E}::=\mathrm{E}+\mathrm{T}$
(2) $\mathrm{E}::=\mathrm{T}$
(3) $\mathrm{T}::=\mathrm{T} * \mathrm{~F}$
(4) $T::=F$
(5) $\mathrm{F}::=(\mathrm{E})$
(6) $\mathrm{F}::=\mathrm{id}$
id * id +id

STATE	action								
	id	+	$*$	$($	$)$	$\$$	E	T	F
0	s5			$s 4$			1	2	3
1		s6				acc			
2		r2	s7		r2	r2			
3		r4	r4		r4	r4			
4	s5			s4			8	2	3
5		r6	r6		r6	r6			
6	s5			s4				9	3
7	s5			s4					10
8		s6			s11				
9		r1	s7		r1	r1			
10		r3	r3		r3	r3			
11		r5	r5		r5	r5			

by Neng-Fa Zhou

Unambiguous Grammars that are

 not SLR(1)$$
\begin{aligned}
& \mathrm{S}::=\mathrm{L}=\mathrm{R} \\
& \mathrm{~S}::=\mathrm{R} \\
& \mathrm{~L}::=* \mathrm{R} \\
& \mathrm{~L}::=\mathrm{id} \\
& \mathrm{R}::=\mathrm{L}
\end{aligned}
$$

LR(1) Parsing Tables

目 $\mathrm{LR}(1)$ item

- LR(0) item + one look ahead terminal

㔊 $\left[\mathrm{A}:=\alpha^{\circ}, \mathrm{a}\right]$

- reduce α to A only if the next symbol is a

LALR(1)

Treat item closures Ii and Ij as one state if Ii and Ij differs from each other only in look ahead terminals.

Descriptive Power of Different Grammars

$\operatorname{LR}(1)>\operatorname{LALR}(1)>\operatorname{SLR}(1)$

