I3 Syntax Analysis

Source program

tokens

parser tree

by Neng-Fa Zhou

9
-9

)
o
_ 9

®
PN

-
L ®
Y
L ®

=%

f_’f The Role of the Parser

Construct a parse tree

Report and recover from errors

=
=
=

Collect information into symbol tables

by Neng-Fa Zhou

Y
B
2
Y
P
PN
@
. ®
= ®
L ®
9

9
B
®
Y
= 9
e
1@
Y
. »
2

9
§ . Context-free Grammars

G=(Z ,N,P,S)

2. 1s a finite set of terminals

N 1s a finite set of non-terminals

P 1s a finite subset of production rules
S 1s the start symbol

by Neng-Fa Zhou

i3 CFG: Examples

E:=T|E+T|E-T
T:=F|T*F|T/F
F:=1d|(E)

by Neng-Fa Zhou

. CFG vs. Regular Expressions
i 9
: ~|CFG is more expressive than RE

— Every language that can be described by
regular expressions can also be described by a
CFG

— 1f-then-else statement, {a"b" | n>=1}

2 #® Non-CFG

: ~ LI={wew [w is in (a[b)™}

8o L2={a"bmcndm |irsL1and m>=1}

Derivations

aAB => ayf 1if A=y

‘

*
o= Qo

o=> B and p=> y then o= y

\

[o 1s a sentential form

o 1S a sentence 1f 1t contains

| only terminal symbols
by Neng-Fa Zhou

]
9
P
?
s
B
9
»
B
s
e
e
i
l ®

Derivations

~leftmost derivation
aAP == ayf if a is a string of terminals

Rightmost derivation

aAB => ayf if P is a string of terminals

by Neng-Fa Zhou

9
j , Parse Irees
X]
s ® A parse tree is any tree in which
PN , .

— The root 1s labeled with S

— Each leaf 1s labeled with a token a or ¢

— Each interior node is labeled by a nonterminal

If an interior node 1s labeled A and has children
labeled X1,.. Xn, then A ::= X1...Xn 1s a
production.

by Neng-Fa Zhou

9 . .
Parse Trees and Derivations

E:=E+E|E*E|E-E|-E|(E)]|id

id
by Neng-Fa Zhou

E
£
E
Kl
?
_ 9
>
»
S
-
L
E
2

9 . .

j . Ambiguity
9
: | A grammar that produces more than one

Y @ ambiguous.

£
e
E - [
L
it * o

id

Eliminating Ambiguity

~ Rewrtite productions to take the precedence
of operators 1nto account

stmt ::= matched stmt |
unmatched stmt

matched stmt ::=1f E then matched stmt else matched stmt |
other

unmatched stmt ::=1f E then stmt |
if £ then matched stmt else unmatched stn

| »
9
?
B
®
z
B
E
o
 ®
19
Y
1 ®
1 9

by Neng-Fa Zhou

—~ 9

2 Eliminating Left-Recursion

Direct left-recursion

A:=Aa|PB A :=Aal | ... [Aoam|B1]...|pn
} \

A = BA A :=B1A"| ... |BnA’
A':=0A'|e A':=alA'|...|anA' | ¢

by Neng-Fa Zhou

y
9
s
PN
"
P
B
s
I
e
S
2

B Eliminating Indirect Left-

I3 Recursion

£® Indirect left-recursion

~
S::=Aa|b
A:=Ac|Sd|e

~| Algorithm

Arrange the nonterminals in some order A ,...,A..
for (11n 1..n) {
for jin 1..1-1) {
replace each production of the form A;::==A;y by the
productions A; ::= 0,7 | 0,Y |... | O,y where
} A; =00y ... | O

eliminate the immediate left recursion among A, productions
} by Neng-Fa Zhou

e

§ ., Left Factoring

A:=afl|..|afn|y

|

by Neng-Fa Zhou

9
-9
B
o
_ 9
e
PN
-
L ®
Y
L ®
£

E
=
- 9
_
-9
= ®

3
-9
—
-~ @
= 8
. B
- @

2
9

Top-Down Parsing

Start from the start symbol and build
the parse tree top-down

Apply a production to a nonterminal.
The right-hand of the production will be
the children of the nonterminal

Match terminal symbols with the input
May require backtracking

Some grammars are backtrack-free
. . by Neng-Fa Zhou
oredictive

=
=
=

Construct Parse Trees Top-Down

— Start with the tree of one node labeled with
the start symbol and repeat the following
steps until the fringe of the parse tree
matches the input string

* 1. At a node labeled A, select a production with
A on its LHS and for each symbol on its RHS,
construct the appropriate child

» 2. When a terminal is added to the fringe that
doesn't match the input string, backtrack

3. Find the next node to be expanded
— I Minimize the numberof backtracks

' 9
=
i
2
E

| @
®
E
e
@
19
1 ®
! ®
1 9

Example

Left-recursive Right-recursive

ge= 0 = TEFE
| E+T = T
|E-T | -TE'
F | e
| T*F : B
| T/F = *FT
1d
| number
| (E)

. | number
X by Qeng—ﬁé Zhou | (E)

i 2 Control Top-Down Parsing

— 9

: “|Heuristics
: Py — Use input string to guide search

= ® | Backtrack-free search

— Lookahead 1s necessary

* Predictive parsing

by Neng-Fa Zhou

] . . -
l » Predictive Parsing

~| FIRST(X)

— If X 1s a terminal
- FIRST(X)={X}

-~ I X:i=¢
- Add ¢ to FIRST(X)

- I X:=Y,Y,,....Y,
- Add FIRST(Y,) to FIRST(X) if Y,...Y,, =* ¢
* Add € to FIRST(X) if Y,...Y, =% ¢

]
X
P
19
@
= 8
- ®
: B
c 9

by Neng-Fa Zhou

P . . .
j » Predictive Parsing

§ 3 FIRST and FOLLOW

£® - FOLLOW(X)
' —Add $ to FOLLOW(S)
—IfA::=aBp

* Add everything in FIRST(J) except for € to
FOLLOW(B)

—IfA:=aBB (p=*¢)orA::=aB
* Add everything in FOLLOW(A) to FOLLOW(B)

EY

?
' ®
P

e
Y
@
i 9
Y
! ®
H »

by Neng-Fa Zhou

:®
d
-9
Kl
Kl
2
-9
*
3
29
—
*
= 8
. B
-

Recursive Descent Parsing

match(expected_token){

}

if (input_token != expected_token)

error();
else
input_token = next_token();

main(){

}

input_token = next_token();

exp();
match(EOS);

exp(){

}

switch (input_token) {
case ID, NUM, L_PAREN:
term();
exp_prime();
return;
default:
error();

}

exp_prime(){

switch (input_token){

case PLUS:
match(PLUS);
term();
exp_prime();
break;

case MINUS:
match(MINUS);
term();
exp_prime();
break;

case R_PAREN,EOS:
break;

default:
error();

}
}

by Neng-Fa Zhou

Top-Down Parsing

i35 (Nonrecursive predictive parser)

INPUT +

|

Predictive Parsing
Program

|

Parsing Table
M

by Neng-Fa Zhou

- 9
2
-9
= ®
3
-9
—
-~ @
= 8
. B
- @

B Top-Down Parsing

s
B
' 9
-
»
.9
®
a
e
i ®

i > (Nonrecursive predictive parser)

set ip to point to the first symbol of w$;
repeat
let X be the top stack symbol and a the symbol pointed to by ip;
if X is a terminal or § then
if X = a then

pop X from the stack and advance ip

else error() parsing table
else s% X 18 a nontermine
fM|X, al|= X - Y,Y, - Y, then begin
pop X from the stack;
push ¥, ¥, _;, ..., Y, onto the stack, with ¥, on top;
output the production X = ¥,¥, - - - ¥,
end

else error()
until X = § /% stack is empty =/

<

-9

E
9
E
Kl
?
9
>
>
S
-
L
E
2

Example

STACK

OUTPUT

$LE
$E'T
$E'T'F
$E£ T id
$E T
$E'
SE'T +
$E'T
$ET'F
$ET id
$ET’
$E T F
$E'T'F
$E'T'id
$ET
$E’

$

E - TE'
T - FT'
F —id

T — €

Parsing Table Construction

for each production p = (A::=a) {
for each terminal a in FIRST(a), add p to M[A,a];
if € 1s in FIRST(av)
for each terminal 5 (including $) in FOLLOW(A)
add p to M[A,b];

by Neng-Fa Zhou

@

Example

E:=E+T|T Eu=TFE
T ::=T*F|F E'::=+TE'| e
F ::=(E)|id Tu=FT
T ::=*FT"| e
F:=(E)|id

INPUT SYMBOL

¥ (
E-TE’

e

F-(E)

LL(1) Grammar

A grammar i1s said to be LL(1) if [M[A,a]|<=1 for
each nonterminal A and terminal a.

Example (non-LL(1) grammar)

S ::=1EtS | 1EtSeS | a S'::: 1B |
E-=bh =eS|e
E:=b

by Neng-Fa Zhou

i , Bottom-Up Parsing
L9
: Start from the input sequence of tokens

: # | Apply a production to the sentential form
8 ® and rewrite it to a new one

. : ~| Keep track of the current sentential form

by Neng-Fa Zhou

§ ., Construct Parse Trees Bottom-Up

= 9
= ® 1.0 = the given string of tokens;

= ® 2. Repeat (reduction)
=® 2.1 Matches the RHS of a production

= ® with a substring of a

2.2 Replace RHS with the LHS of the production
until no production rule applies (backtrack) or
o becomes the start symbol (success);

by Neng-Fa Zhou

'S Example

E
£
E
Kl
?
_ 9
>
»
S
-
L
E
2

by Neng-Fa Zhou

§ ., Control Bottom-Up Parsing
-9
~Handle

— A substring that matches the right side of a
production

— Applying the production to the substring results
in a right-sentential form, i.e., a sentential form
occurring in a right-most derivation

®
Example id +id * id

E .:= E+E E+id * id

::=E*E E+E*id
o (E) byiNersFaaon e

=9

| o Bottom-Up Parsing
82 Shift-Reduce Parsing

push '$' onto the stack;
token = nextToken();
repeat

if (there 1s a handle A::=[on top of the stack){
reduce B to A;/* reduce */
pop P off the stack;
push A onto the stack;

} else {/* shift */
shift token onto the stack;
token = nextToken();

)

until (top of stack 1s S and token is eof)

by Neng-Fa Zhou

Kl
Kl
2
-9
*
3
-9
—
-~ @
= 8
. B
-

'S Example

ACTION

shift

reduce by £ — id
shift

shift

reduce by £ — id
shift

shift

reduce by £ — id
reduce by £ - FE % F
reduce by E - E + E
accept

by Neng-Fa Zhou

E
9
E
Kl
?
_ 9
>
>
S
-
L
E
2

—~ 9

o A Problem in Shift-Reduce

Y
|, Parser

d

The stack has to be scaned to see whether
a handle appears on it.

Use a state to uniquely i1dentify a part of a

handle (viable prefix) so that stack scanning
becomes unnecessary

by Neng-Fa Zhou

LR Parser

dy

|

~ 9
-9
-9
E]
Kl
£
—d
*
19
| ®
—
*

= 8
L B
: @

LR

Parsing Program

o

‘

S

action

by Neng-Fa Zhou

POOOOOOOOOOLOOOOGS

LR Parsing Program

set ip to point to the first symbol of w$;
repeat forever begin
let s be the state on top of the stack and
a the symbol pointed to by ip;
if action|s, a| = shift 5" then begin
push a then s" on top of the stack;
advance ip to the next input symbol
end
else if action|s, a] = reduce A — 3 then begin
pop 2% |B | symbols off the stack;
let 5" be the state now on top of the stack;
push A then goto(s', A] on top of the stack;
output the production A — 8
end
else if action|s, a] = accept then
return
else error()
end

(1) E::=E+T
2Q)E:=T
(3) T ::=T*F
4)T:=F
(5 F ::=(E)
(6) F ::=1d

id * 1d +1d

action

e

*

(

— —

0
|
2
3
4
3
6
7
8
9
0
|

sO
r2
r4

rH

s4

by Neng-Fa Zhou

§ , LR Grammars
i 9
“|LR grammar

— A grammar 1s said to be an LR grammar 1f
we can construct a parsing table for it.

=® LR(k) grammar
. — lookahead of up to k input symbols
ISLR(1), LR(1), and LALR(1) grammars

by Neng-Fa Zhou

*
B
-~ @
= 8
2
*

i3 SLR Parsing Tables

“ LR(0) item

— A production with a dot at some position of the
RHS

A= oXYZ we are expecting XYZ
A:=XYZ

A:=XYZ
A:=XYZ we have seen XYZ

by Neng-Fa Zhou

repeat

for cach item A — o'Bp in J and each production
B — v of G such that B — v is not in J do
add B = -y to J
until no more items can be added to J;
return J
end

by Neng-Fa Zhou

B . Closure of a Set of Items I

T
<
s
§=3
o

gy

E+T|T
T*F | F
(E) 1d

*TJHFHFH

closure({E'::=«E})=7?

y
9
s
PN
"
-
P

®
I
e
S
e ®

by Neng-Fa Zhou

_ B

e

§ . The goto Operation

goto(I,X) =closure({A::=aX*B| A:=a X 1sinl})

~|Example
[={E'::=FEs,E::=Ee+ T}

goto(I,+) =?

by Neng-Fa Zhou

=
=]
_E
Y
Y
P
a2
L ®
= ®
. ®
= 9

Canonical LR(0) Collection of
Set of Items

procedure items (G');
begin

C := {closure({[S' = ‘SI}};

repeat

for each set of items / in C and each grammar symbol X
such that gote (I, X) is not empty and not in C do
add goto(I, X) to C
until no more sets of items can be added to C

=
-9
e]
>
*
-
e
e

_ S
|8 1o

- @

- B

: B

-

by Neng-Fa Zhou

v/

e

by Neng-Fa Zhou

Constructing SLR Parsing Table

Construct C={10,I1,...,In}, the collection of sets of LR(0)
items for G’ (augmented grammar).

If [A—aeaf3] is in i where a 1s a terminal and
goto(Ij,a)=Ij, the set action[i,a] to “shift j”.

If [S’—>Se] is in Ii, then set action[1,$] to “accept”.

If [A—ae] is in I1, then set action[1,a] to “reduce A—»a”
for all ain FOLLOW(A).

]
K
' 3

2
B
®

i e

B
Y
a

!9
' ®
| 9

by Neng-Fa Zhou

(1) E::=E+T
2Q)E:=T
(3) T ::=T*F
4)T:=F
(5 F ::=(E)
(6) F ::=1d

id * 1d +1d

action

e

*

(

— —

0
|
2
3
4
3
6
7
8
9
0
|

sO
r2
r4

rH

s4

by Neng-Fa Zhou

B o Unambiguous Grammars that are
g > not SLR(1)

ooy
% oY

~ |

~

- a

by Neng-Fa Zhou

F)
s
Py
9
-
Y
®
e
e
i
e ®

LR(1) Parsing Tables

“ LR(1) item
— LR(0) item + one look ahead terminal

- [Ar=oe 4]

— reduce a to A only if the next symbol 1s a

by Neng-Fa Zhou

]
X
P
19
@
= 8
- ®
: B
c 9

asa..oj. N N N N N

\

i

=® Treat item closures Ii and Ij as one state if Ii
: and Ij differs from each other only 1n look
ahead terminals.

by Neng-Fa Zhou

B o Descriptive Power of Different

2
Qo
=
=
S

LR(1)>LALR(1) > SLR(1)

y
9
s
PN
"
-
P

®
I
e
S
e ®

by Neng-Fa Zhou

