

The Role of the Parser

Construct a parse tree
Report and recover from errors
Collect information into symbol tables

Context-free Grammars

 $G=(\Sigma, N, P, S)$

- $-\Sigma$ is a finite set of terminals
- N is a finite set of non-terminals
- P is a finite subset of production rules
- S is the start symbol

CFG vs. Regular Expressions

CFG is more expressive than RE

 Every language that can be described by regular expressions can also be described by a CFG

Example languages that are CFG but not RE

- if-then-else statement, $\{a^nb^n | n \ge 1\}$

Non-CFG

- $-L1 = \{wcw \mid w \text{ is in } (a|b)^*\}$
- $-L2 = \{a^{n}b^{m}c^{n}d^{m} \not\models n \ge 1\}$

Derivations

 $S \stackrel{*}{\Longrightarrow} \alpha$

 $\alpha A\beta \implies \alpha \gamma \beta$ if $A ::= \gamma$

$$\alpha \stackrel{*}{\Longrightarrow} \alpha$$
$$\alpha \stackrel{*}{\Longrightarrow} \beta \text{ and } \beta \stackrel{*}{\Longrightarrow} \gamma \text{ then } \alpha \stackrel{*}{\Longrightarrow} \gamma$$

 α is a sentential form

α is a sentence if it contains only terminal symbols by Neng-Fa Zhou

Derivations

leftmost derivation

 $\alpha A\beta \implies \alpha \gamma \beta$ if α is a string of terminals **Rightmost derivation**

 $\alpha A\beta \implies \alpha \gamma \beta$ if β is a string of terminals

Parse Trees

A parse tree is any tree in which

- The root is labeled with S
- Each leaf is labeled with a token a or ε
- Each interior node is labeled by a nonterminal
- If an interior node is labeled A and has children labeled X1,.. Xn, then A ::= X1...Xn is a production.

Parse Trees and Derivations

E ::= E + E | E * E | E - E | - E | (E) | id

Ambiguity

A grammar that produces more than one parse tree for some sentence is said to be *ambiguous*.

Eliminating Ambiguity

Rewrite productions to take the precedence of operators into account

stmt ::= matched_stmt |
 unmatched_stmt
matched_stmt ::= if E then matched_stmt else matched_stmt |
 other

unmatched_stmt ::= if *E* then *stmt* |

if *E* then *matched_stmt* else *unmatched_stmt*

Eliminating Left-Recursion

Direct left-recursion

$A ::= A\alpha \mid \beta$	$A ::= A\alpha 1 \mid \dots \mid A\alpha m \mid \beta 1 \mid \dots \mid \beta n$
ŧ	¥
A ::= βA'	$A ::= \beta 1 A' \mid \dots \mid \beta n A'$
$A' ::= \alpha A' \mid \varepsilon$	$A' ::= \alpha 1 A' \mid \dots \mid \alpha n A' \mid \varepsilon$

Eliminating Indirect Left-Recursion

Indirect left-recursion

 $S ::= Aa \mid b$ $A ::= Ac \mid Sd \mid \varepsilon$

Algorithm

}

Arrange the nonterminals in some order $A_1,...,A_n$. for (i in 1..n) { for (j in 1..i-1) { replace each production of the form $A_i ::= A_j \gamma$ by the productions $A_i ::= \delta_1 \gamma | \delta_2 \gamma |... | \delta_k \gamma$ where $A_j ::= \delta_1 | \delta_2 |... | \delta_k$

eliminate the immediate left recursion among A_i productions

Left Factoring

A ::= $\alpha\beta 1 \mid ... \mid \alpha\beta n \mid \gamma$ A ::= $\alpha A' \mid \gamma$ A' ::= $\beta 1 \mid ... \mid \beta n$

Top-Down Parsing

- Start from the start symbol and build the parse tree top-down
- Apply a production to a nonterminal. The right-hand of the production will be the children of the nonterminal
- Match terminal symbols with the input
 - May require backtracking
 - Some grammars are backtrack-free (predictive)

Construct Parse Trees Top-Down

 Start with the tree of one node labeled with the start symbol and repeat the following steps until the fringe of the parse tree matches the input string

- 1. At a node labeled A, select a production with A on its LHS and for each symbol on its RHS, construct the appropriate child
- 2. When a terminal is added to the fringe that doesn't match the input string, backtrack
- 3. Find the next node to be expanded
- –! Minimize the number of backtracks

Example

Left-recursive

$$E ::= T$$

$$|E + T$$

$$|E - T$$

$$T ::= F$$

$$|T * F$$

$$|T / F$$

$$F ::= id$$

$$| number$$

(E)

Right-recursive E ::= T E' E'::= + T E' | - T E' e T::= F T' T' ::= * F T' | / F T' e F ::= id number X by 2eng-1 X Zhou (E)

Control Top-Down Parsing

Heuristics

– Use input string to guide search

Backtrack-free search

- Lookahead is necessary
 - Predictive parsing

Predictive Parsing FIRST and FOLLOW

FIRST(X)

- If X is a terminal
 - FIRST(X)= $\{X\}$
- If X::= ϵ
 - Add ε to FIRST(X)
- $\text{ If } X ::= Y_1, Y_2, \dots, Y_k$
 - Add FIRST(Y_i) to FIRST(X) if $Y_1 \dots Y_{i-1} = > * \varepsilon$
 - Add ε to FIRST(X) if $Y_1 \dots Y_k = \varepsilon$

Predictive Parsing FIRST and FOLLOW

FOLLOW(X)

- Add \$ to FOLLOW(S)
- $If A ::= \alpha B\beta$
 - Add everything in FIRST(β) except for ε to FOLLOW(B)
- If A ::= $\alpha B\beta$ (β =>* ϵ) or A ::= αB
 - Add everything in FOLLOW(A) to FOLLOW(B)

Recursive Descent Parsing

match(expected_token){
 if (input_token != expected_token)
 error();
 else
 input_token = next_token();
}

main(){
 input_token = next_token();
 exp();
 match(EOS);
}

exp(){ switch (input_token) { case ID, NUM, L_PAREN: term(); exp_prime(); return; default: error(); exp_prime(){ switch (input_token){ case PLUS: match(PLUS); term(); exp_prime(); break: case MINUS: match(MINUS); term(); exp_prime(); break; case R_PAREN,EOS: break; default: error();

Top-Down Parsing (Nonrecursive predictive parser)

Top-Down Parsing

(Nonrecursive predictive parser)

set *ip* to point to the first symbol of w;

repeat

let X be the top stack symbol and a the symbol pointed to by *ip*; if X is a terminal or \$ then

```
if X = a then
```

pop X from the stack and advance ip

else error()

else

if $M[X, a] = X \rightarrow Y_1 Y_2 \cdots Y_k$ then begin

pop X from the stack;

/* X is a nonterminal */

push Y_k , Y_{k-1} , ..., Y_1 onto the stack, with Y_1 on top; output the production $X \rightarrow Y_1 Y_2 \cdots Y_k$

parsing table

end

else error()

until X = /* stack is empty */

Example

Stack	Input	Output
\$ <i>E</i>	id + id * id	
E'T	id + id * id\$	$E \rightarrow TE'$
E'T'F	id + id * id\$	$T \rightarrow FT'$
E'T'id	id + id * id\$	$F \rightarrow id$
E'T'	+ id * id\$	
E'	+ id * id\$	$T' \rightarrow \epsilon$
E'T +	+ id * id\$	$E' \rightarrow +TE'$
E'T	id * id\$	
E'T'F	id * id\$	$T \rightarrow FT'$
E'T'id	id * id\$	$F \rightarrow id$
E'T'	* id\$	
E'T'F *	* id\$	$T' \rightarrow *FT'$
E'T'F	id\$	
E'T'id	id\$	$F \rightarrow id$
E'T'	\$	
E'	\$	$T' \rightarrow \epsilon$
\$	\$	$E' \rightarrow \epsilon$

Parsing Table Construction

for each production $p = (A::=\alpha)$ { for each terminal *a* in FIRST(α), add *p* to M[A,*a*]; if ε is in FIRST(α)

for each terminal b (including \$) in FOLLOW(A)
 add p to M[A,b];

Example

E ::= E+T | T T ::= T*F | F F ::= (E) | id E ::= TE' E' ::= +TE' | e T ::= FT' T' ::= *FT' | e F ::= (E) | id

NONTER-	INPUT SYMBOL					
MINAL	id	+	*	()	\$
E	$E \rightarrow TE'$	11.11.11.11		$E \rightarrow TE'$		
<i>E'</i>		$E' \rightarrow + TE'$			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow FT'$	A SECTO		$T \rightarrow FT'$		
T'		T'→€	$T' \rightarrow *FT'$	programming (Section of the section	$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	F→id	-		$F \rightarrow (E)$		

LL(1) Grammar

A grammar is said to be LL(1) if $|M[A,a]| \le 1$ for each nonterminal A and terminal a.

Example (non-LL(1) grammar)

S ::=iEtS | iEtSeS | a E :: = b S ::= iEtSS' | a S' ::= eS | ε E ::= b

Bottom-Up Parsing

Start from the input sequence of tokens
Apply a production to the sentential form and rewrite it to a new one

Keep track of the current sentential form

Construct Parse Trees Bottom-Up

1.α = the given string of tokens;
2. Repeat (reduction)
2.1 Matches the RHS of a production with a substring of α
2.2 Replace RHS with the LHS of the production until no production rule applies (backtrack) or α becomes the start symbol (success);

Example

S ::= aABe A ::= Abc | b B ::= d abbcde aAbcde aAde aABe s

Control Bottom-Up Parsing

Handle

- A substring that matches the right side of a production
- Applying the production to the substring results in a *right-sentential form, i.e.,* a sentential form occurring in a right-most derivation

Exampleid + id * idE ::= E + EE + id * idE ::= E * EE + id * idE ::= E * EE + E * idE ::= (E)by Nerge-Fa Zeo** EE ::= idE ::= id

Bottom-Up Parsing Shift-Reduce Parsing

push '\$' onto the stack; token = nextToken(); repeat

if (there is a handle A::=β on top of the stack){
 reduce β to A; /* reduce */
 pop β off the stack;
 push A onto the stack;
} else {/* shift */
 shift token onto the stack;
 token = nextToken();

until (top of stack is S and token is eof)

Example

	Stack	Input	ACTION
(1)	\$	$\mathbf{id}_1 + \mathbf{id}_2 * \mathbf{id}_3$	shift
(2)	\$id ₁	+ $\mathbf{id}_2 * \mathbf{id}_3$ \$	reduce by $E \rightarrow id$
(3)	\$ <i>E</i>	+ $\mathbf{id}_2 * \mathbf{id}_3$ \$	shift
(4)	E +	$\mathbf{id}_2 * \mathbf{id}_3$ \$	shift
(5)	$E + id_2$	* id ₃ \$	reduce by $E \rightarrow id$
(6)	E + E	* id ₃ \$	shift
(7)	E + E *	id ₃ \$	shift
(8)	$E + E * id_3$	\$	reduce by $E \rightarrow id$
(9)	E + E * E	\$	reduce by $E \rightarrow E * E$
(10)	E + E	\$	reduce by $E \rightarrow E + E$
(11)	\$ <i>E</i>	\$	accept

A Problem in Shift-Reduce Parser

The stack has to be scaned to see whether a handle appears on it.

Use a state to uniquely identify a part of a handle (*viable prefix*) so that stack scanning becomes unnecessary

LR Parser

LR Parsing Program

set *ip* to point to the first symbol of *w*\$; repeat forever begin

let s be the state on top of the stack and a the symbol pointed to by ip; if action[s, a] = shift s' then begin push a then s' on top of the stack; advance ip to the next input symbol

end

else if $action[s, a] = reduce A \rightarrow \beta$ then begin pop $2*|\beta|$ symbols off the stack; let s' be the state now on top of the stack; push A then goto [s', A] on top of the stack; output the production $A \rightarrow \beta$

end

else if action[s, a] = accept then
 return
else error()

end

Example

(1) E ::= E+T
(2) E ::= T
(3) T ::= T*F
(4) T ::= F
(5) F ::= (E)
(6) F ::= id

id * id + id

STATE		action						goto		
	id	+	*	()	\$	E	Т	F	
0	s5	1.72	1. 14	s4		199	1	2	3	
1		s6				acc	1			
2		r2	s7		r2	r2				
3		r4	r4		r4	r4	1.65			
4	s5			s4			8	2	3	
5	1	r6	r6		r6	r6				
6	s5			s4				9	3	
7	s5			s4			1		10	
8		s6			s11					
9		rl	s7		r1	r1	112			
10		r3	r3		r3	r3				
11		r5	r5		r5	r5				

LR Grammars

LR grammar

 A grammar is said to be an LR grammar if we can construct a parsing table for it.

LR(k) grammar

- lookahead of up to k input symbols

SLR(1), LR(1), and LALR(1) grammars

SLR Parsing Tables

$\Box LR(0)$ item

A production with a dot at some position of the RHS

A ::= XY•**Z**

 $A ::= XYZ \bullet$

we are expecting XYZ

Closure of a Set of Items I

function closure (I); begin

```
J:=I;
```

repeat

end

for each item $A \rightarrow \alpha \cdot B\beta$ in J and each production $B \rightarrow \gamma$ of G such that $B \rightarrow \cdot \gamma$ is not in J do add $B \rightarrow \cdot \gamma$ to J until no more items can be added to J; return J

Closure of a Set of Items I Example

E' ::= E E ::= E+T | T T ::= T*F | F F ::= (E) | id

 $closure({E'::= \bullet E}) = ?$

The goto Operation

goto(I,X) = closure({A ::= $\alpha X \bullet \beta | A ::= \alpha \bullet X \beta$ is in I})

Example

$$I = \{E' ::= E \bullet, E ::= E \bullet + T\}$$

goto(I,+) = ?

Canonical LR(0) Collection of Set of Items

procedure items (G');

begin

 $C := \{closure(\{[S' \rightarrow \cdot S]\})\};\$

repeat

for each set of items I in C and each grammar symbol X
 such that goto(I, X) is not empty and not in C do
 add goto(I, X) to C
until no more sets of items can be added to C

end

Constructing SLR Parsing Table

- Construct C={I0,I1,...,In}, the collection of sets of LR(0) items for G' (augmented grammar).
- 2. If $[A \rightarrow \alpha \bullet a\beta]$ is in Ii where a is a terminal and goto(Ij,a)=Ij, the set action[i,a] to "shift j".
- 3. If $[S' \rightarrow S \bullet]$ is in Ii, then set action [i,\$] to "accept".
- 4. If $[A \rightarrow \alpha \bullet]$ is in Ii, then set action[i,a] to "reduce $A \rightarrow \alpha$ " for all a in FOLLOW(A).

Example

(1) E ::= E+T
(2) E ::= T
(3) T ::= T*F
(4) T ::= F
(5) F ::= (E)
(6) F ::= id

id * id + id

STATE		action						goto		
	id	+	*	()	\$	E	Т	F	
0	s5	172-6	1. 14	s4		199	1	2	3	
1		s6				acc	1			
2		r2	s7		r2	r2				
3		r4	r4		r4	r4	1.65			
4	s5			s4			8	2	3	
5	1	r6	r6		r6	r6				
6	s5			s4				9	3	
7	s5			s4			1		10	
8		s6			s11					
9		rl	s7		r1	r1	112			
10		r3	r3		r3	r3				
11		r5	r5		r5	r5				

Unambiguous Grammars that are not SLR(1)

LR(1) Parsing Tables

$\Box LR(1)$ item

-LR(0) item + one look ahead terminal

[A::=α•,a]

– reduce α to A only if the next symbol is a

LALR(1)

Treat item closures Ii and Ij as one state if Ii and Ij differs from each other only in look ahead terminals.

Descriptive Power of Different Grammars

LR(1) > LALR(1) > SLR(1)