
by Neng-Fa Zhou

Syntax Analysis

lexical analyzer

syntax analyzer

semantic analyzer

source program

tokens

parse tree

parser tree

by Neng-Fa Zhou

The Role of the Parser

Construct a parse tree
Report and recover from errors
Collect information into symbol tables

by Neng-Fa Zhou

Context-free Grammars

– is a finite set of terminals
– N is a finite set of non-terminals
– P is a finite subset of production rules
– S is the start symbol

G=( ,N,P,S)

by Neng-Fa Zhou

E ::= T | E + T | E - T
T ::= F | T * F |T / F
F ::= id | (E)

CFG: Examples

Arithmetic expressions

Statements
IfStatement ::= if E then Statement else Statement

by Neng-Fa Zhou

CFG vs. Regular Expressions

CFG is more expressive than RE
– Every language that can be described by

regular expressions can also be described by a
CFG

Example languages that are CFG but not RE
– if-then-else statement, {anbn | n>=1}

Non-CFG
– L1={wcw | w is in (a|b)*}
– L2={anbmcndm | n>=1 and m>=1}

by Neng-Fa Zhou

Derivations

if 



  and then

*

* *

S *

is a sentential form

is a sentence if it contains
only terminal symbols

by Neng-Fa Zhou

Derivations

leftmost derivation

Rightmost derivation
if  is a string of terminals

if  is a string of terminals

by Neng-Fa Zhou

Parse Trees

A parse tree is any tree in which
– The root is labeled with S
– Each leaf is labeled with a token a or 
– Each interior node is labeled by a nonterminal
– If an interior node is labeled A and has children

labeled X1,.. Xn, then A ::= X1...Xn is a
production.

by Neng-Fa Zhou

Parse Trees and Derivations

E ::= E + E | E * E | E - E | - E | (E) | id

by Neng-Fa Zhou

Ambiguity

A grammar that produces more than one
parse tree for some sentence is said to be
ambiguous.

by Neng-Fa Zhou

Eliminating Ambiguity

Rewrite productions to take the precedence
of operators into account

stmt ::= matched_stmt |
unmatched_stmt

matched_stmt ::= if E then matched_stmt else matched_stmt |
other

unmatched_stmt ::= if E then stmt |
if E then matched_stmt else unmatched_stmt

by Neng-Fa Zhou

Eliminating Left-Recursion

Direct left-recursion



A ::= A'
A' ::= A' | 

mn

A ::= A' | ... |nA'
A' ::= A' | ... | nA' | 

by Neng-Fa Zhou

S ::= Aa | b
A ::= Ac | Sd | 

Eliminating Indirect Left-
Recursion
Indirect left-recursion

Algorithm
Arrange the nonterminals in some order A1,...,An.
for (i in 1..n) {

for (j in 1..i-1) {
replace each production of the form Ai ::= Aj by the
productions Ai ::= kwhere

Aj ::=   k

eliminate the immediate left recursion among Ai productions

}

by Neng-Fa Zhou

Left Factoring

n 

A' 
A' ::= n

by Neng-Fa Zhou

Top-Down Parsing

 Start from the start symbol and build
the parse tree top-down

 Apply a production to a nonterminal.
The right-hand of the production will be
the children of the nonterminal

Match terminal symbols with the input
 May require backtracking
 Some grammars are backtrack-free

(predictive)

by Neng-Fa Zhou

Construct Parse Trees Top-Down

– Start with the tree of one node labeled with
the start symbol and repeat the following
steps until the fringe of the parse tree
matches the input string

• 1. At a node labeled A, select a production with
A on its LHS and for each symbol on its RHS,
construct the appropriate child

• 2. When a terminal is added to the fringe that
doesn't match the input string, backtrack

• 3. Find the next node to be expanded
– ! Minimize the number of backtracks

by Neng-Fa Zhou

Example

E ::= T
| E + T
| E - T

T ::= F
| T * F
| T / F

F ::= id
| number
| (E)

x - 2 * y

Left-recursive

E ::= T E'
E'::= + T E'

| - T E'
| e

T::= F T'
T' ::= * F T'

| / F T'
| e

F ::= id
| number
| (E)

Right-recursive

by Neng-Fa Zhou

Control Top-Down Parsing

Heuristics
– Use input string to guide search

Backtrack-free search
– Lookahead is necessary

• Predictive parsing

by Neng-Fa Zhou

Predictive Parsing
FIRST and FOLLOW
FIRST(X)

– If X is a terminal
• FIRST(X)={X}

– If X::= 
• Add  to FIRST(X)

– If X::=Y1,Y2,…,Yk
• Add FIRST(Yi) to FIRST(X) if Y1…Yi-1 =>* 
• Add  to FIRST(X) if Y1…Yk =>* 

by Neng-Fa Zhou

Predictive Parsing
FIRST and FOLLOW
FOLLOW(X)

– Add $ to FOLLOW(S)
– If A ::= B

• Add everything in FIRST() except for  to
FOLLOW(B)

– If A ::= B=>* or A ::= B
• Add everything in FOLLOW(A) to FOLLOW(B)

by Neng-Fa Zhou

Recursive Descent Parsing
match(expected_token){
if (input_token != expected_token)
error();

else
input_token = next_token();

}

main(){
input_token = next_token();
exp();
match(EOS);

}

exp(){
switch (input_token) {
case ID, NUM, L_PAREN:
term();
exp_prime();
return;

default:
error();

}
}

exp_prime(){
switch (input_token){
case PLUS:
match(PLUS);
term();
exp_prime();
break;

case MINUS:
match(MINUS);
term();
exp_prime();
break;

case R_PAREN,EOS:
break;

default:
error();

}
}

by Neng-Fa Zhou

Top-Down Parsing
(Nonrecursive predictive parser)

by Neng-Fa Zhou

Top-Down Parsing
(Nonrecursive predictive parser)

parsing table

by Neng-Fa Zhou

Example

by Neng-Fa Zhou

Parsing Table Construction

for each production p = (A::= {
for each terminal a in FIRST(), add p to M[A,a];
if  is in FIRST()

for each terminal b (including $) in FOLLOW(A)
add p to M[A,b];

}

by Neng-Fa Zhou

Example
E ::= E+T | T
T ::= T*F | F
F ::= (E) | id

E ::= TE'
E' ::= +TE' | e
T ::= FT'
T' ::= *FT' | e
F ::= (E) | id

by Neng-Fa Zhou

LL(1) Grammar

Example (non-LL(1) grammar)

A grammar is said to be LL(1) if |M[A,a]|<=1 for
each nonterminal A and terminal a.

S ::= iEtSS' | a
S' ::= eS | 
E ::= b

S ::=iEtS | iEtSeS | a
E :: = b

by Neng-Fa Zhou

Bottom-Up Parsing

Start from the input sequence of tokens
Apply a production to the sentential form

and rewrite it to a new one
Keep track of the current sentential form

by Neng-Fa Zhou

Construct Parse Trees Bottom-Up

= the given string of tokens;
2. Repeat (reduction)

2.1 Matches the RHS of a production
with a substring of 

2.2 Replace RHS with the LHS of the production
until no production rule applies (backtrack) or

becomes the start symbol (success);

by Neng-Fa Zhou

Example

S ::= aABe
A ::= Abc | b
B ::= d

abbcde

aAbcde

aAde

aABe

S

by Neng-Fa Zhou

Control Bottom-Up Parsing

Handle
– A substring that matches the right side of a

production
– Applying the production to the substring results

in a right-sentential form, i.e., a sentential form
occurring in a right-most derivation

Example
E ::= E+E
E ::= E*E
E ::= (E)
E ::= id

id + id * id
E + id * id
E + E * id
E + E * E

by Neng-Fa Zhou

Bottom-Up Parsing
Shift-Reduce Parsing

push '$' onto the stack;
token = nextToken();
repeat

if (there is a handle ::=on top of the stack){
reduce to ; /* reduce */
pop off the stack;
push A onto the stack;

} else {/* shift */
shift token onto the stack;
token = nextToken();

}
until (top of stack is S and token is eof)

by Neng-Fa Zhou

Example

by Neng-Fa Zhou

A Problem in Shift-Reduce
Parser

The stack has to be scaned to see whether
a handle appears on it.

Use a state to uniquely identify a part of a
handle (viable prefix) so that stack scanning
becomes unnecessary

by Neng-Fa Zhou

LR Parser

by Neng-Fa Zhou

LR Parsing Program

by Neng-Fa Zhou

Example

(1) E ::= E+T
(2) E ::= T
(3) T ::= T*F
(4) T ::= F
(5) F ::= (E)
(6) F ::= id

id * id + id

by Neng-Fa Zhou

LR Grammars

LR grammar
– A grammar is said to be an LR grammar if

we can construct a parsing table for it.
LR(k) grammar

– lookahead of up to k input symbols
SLR(1), LR(1), and LALR(1) grammars

by Neng-Fa Zhou

SLR Parsing Tables

LR(0) item
– A production with a dot at some position of the

RHS

A ::= •XYZ
A ::= X •YZ
A ::= XY•Z
A ::= XYZ•

we are expecting XYZ

we have seen XYZ

by Neng-Fa Zhou

Closure of a Set of Items I

by Neng-Fa Zhou

Closure of a Set of Items I
Example

E' ::= E
E ::= E+T | T
T ::= T*F | F
F ::= (E) | id

closure({E'::= E}) = ?•

by Neng-Fa Zhou

goto(I,X) =closure({A ::= X •  A ::=  •X  is in I})

The goto Operation

Example
I = {E' ::= E , E ::= E + T}

goto(I,+) = ?

• •

by Neng-Fa Zhou

Canonical LR(0) Collection of
Set of Items

by Neng-Fa Zhou

E

T

F

(

by Neng-Fa Zhou

Constructing SLR Parsing Table

1. Construct C={I0,I1,…,In}, the collection of sets of LR(0)
items for G’ (augmented grammar).

2. If [Aais in Ii where a is a terminal and
goto(Ij,a)=Ij, the set action[i,a] to “shift j”.

3. If [S’Sis in Ii, then set action[i,$] to “accept”.

4. If [Ais in Ii, then set action[i,a] to “reduce A”
for all a in FOLLOW(A).

by Neng-Fa Zhou

Example

(1) E ::= E+T
(2) E ::= T
(3) T ::= T*F
(4) T ::= F
(5) F ::= (E)
(6) F ::= id

id * id + id

by Neng-Fa Zhou

Unambiguous Grammars that are
not SLR(1)

S ::= L = R
S ::= R
L ::= * R
L ::= id
R ::= L

by Neng-Fa Zhou

LR(1) Parsing Tables

LR(1) item
– LR(0) item + one look ahead terminal

[A::=,a]
– reduce to A only if the next symbol is a

• 

by Neng-Fa Zhou

by Neng-Fa Zhou

LALR(1)

Treat item closures Ii and Ij as one state if Ii
and Ij differs from each other only in look
ahead terminals.

by Neng-Fa Zhou

Descriptive Power of Different
Grammars

LR(1) > LALR(1) > SLR(1)

