Problem Solving: Informed (Heuristic) Search

- **Uninformed (blind)** search algorithms can find an (optimal) solution to the problem, but they are usually not very efficient.

- **Informed (heuristic)** search algorithms can find solutions more efficiently thanks to exploiting problem-specific knowledge.

 - How to use heuristics in search?
 - BFS, A*, IDA*, RBF, SMA*

 - How to build heuristics?
 - relaxation, pattern databases

Information in search

- Recall that we are looking for (the shortest) path from the initial state to some goal state.

- Which information can help the search algorithm?
 - For example, the length of path to some goal state.
 - However such information is usually not available (if it is available then we do not need to do search). Usually some **evaluation function** \(f(n) \) is used to evaluate „quality“ of node \(n \) based on the length of path to the goal.

- **best-first search**
 - The node with the smallest value of \(f(n) \) is used for expansion.
 - There are search algorithms with different views of \(f(n) \). Usually the part of \(f(n) \) is a **heuristic function** \(h(n) \) estimating the length of the shortest (cheapest) path to the goal state.
 - Heuristic functions are the most common form of additional information given to search algorithms.
 - We will assume that \(h(n) = 0 \iff n \) is goal.

Greedy best-first search

- Let us try to expand first the node that is closest to some goal state, i.e. \(f(n) = h(n) \).
 - greedy best-first search algorithm

Example (path Arad → Bucharest):
- We have a table of direct distances from any city to Bucharest.
- Note: this information was not part of the original problem formulation!

<table>
<thead>
<tr>
<th>City</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>0</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Cluj-Napoca</td>
<td>340</td>
</tr>
<tr>
<td>Debraș</td>
<td>523</td>
</tr>
<tr>
<td>Timisoara</td>
<td>67</td>
</tr>
</tbody>
</table>

Nejkratší cesta?
Greedy best-first search: analysis

- We already know that the greedy algorithm may not find the optimal path.
- Can we at least always find some path?
 - If we expand first the node with the smallest cost then the algorithm may not find any solution.
 - Example: path Iasi → Fagaras
 - Go to Neamt, then back to Iasi, Neamt, ...
 - We need to detect repeated visits in cities!

- Time complexity $O(b^m)$, where m is the maximal depth
- Memory complexity $O(b^m)$
- A good heuristic function can significantly decrease the practical complexity.

Properties of A*

What about completeness and optimality of A*?
First a few definitions:
- admissible heuristic $h(n)$
 - $h(n) = \text{the cost of the cheapest path from n to goal}$
 - an optimistic view (the algorithm assumes a better cost than the real one)
 - function $f(n)$ in A* is a lower estimate of the cost of path through n
- monotous (consistent) heuristic $h(n)$
 - let n' be a successor of n via action a and $c(n,a,n')$ be the transition cost
 - $h(n) \leq c(n,a,n') + h(n')$
 - this is a form of triangle inequality

Monotonous heuristic is admissible.

Let $n_1, n_2, ..., n_k$ be the optimal path from n_1 to goal n_k, then
$h(n_1) + h(n_{i+1}) \leq c(n_i,a,n_{i+1})$, via monotony
$h(n_k) = \sum_{i=1}^{k-1} c(n_i,a,n_{i+1})$, after „sum”

For a monotous heuristic the values of $f(n)$ are not decreasing over any path.
Let n' be a successor of n, i.e. $g(n') = g(n) + c(n,a,n')$, then
$f(n') = g(n') + h(n') = g(n) + c(n,a,n') + h(n') \leq g(n) + h(n) = f(n)$

Algorithm A*:

- Let us now try to use $f(n) = g(n) + h(n)$
 - Recall that $g(n)$ is the cost of path from root to n
 - probably the most popular heuristic search algorithm
 - $f(n)$ represents the cost of path through n
 - the algorithm does not extend already long paths

- If $h(n)$ is an admissible heuristic then the algorithm A* in TREE-SEARCH is optimal.
 - in other words – the first expanded goal is optimal
 - Let G_2 be sub-optimal goal from the fringe and C^* be the optimal cost
 - $f(G_2) = g(G_2) + h(G_2) = g(G_2) > C^*$, because $h(G_2) = 0$
 - Let n be a node from the fringe and being on the optimal path
 - $f(n) = g(n) + h(n) \leq C^*$, via admissibility of $h(n)$
 - together
 - $f(n) \leq C^* < f(G_2)$,
 - i.e., the algorithm must expand n before G_2 and this way it finds the optimal path.
Algorithm A*: optimality

- If \(h(n) \) is a monotonous heuristic then the algorithm A* in GRAPH-SEARCH is optimal.
 - Possible problem: reaching the same state for the second time using a better path – classical GRAPH-SEARCH ignores this second path!
 - A possible solution: selection of better from both paths leading to a close node (extra bookkeeping) or using monotonous heuristic.
 - for monotonous heuristics, the values of \(f(n) \) are not decreasing over any path
 - A* selects for expansion the node with the smallest value of \(f(n) \), i.e., the values \(f(m) \) of other open nodes \(m \) are not smaller, i.e., among all “open” paths to \(n \) there cannot be a shorter path than the path just selected (no path can shorten)
 - hence, the first closed goal node is optimal

Algorithm A*: properties

- For non-decreasing function \(f(n) \) we can draw contours in the state graph (the nodes inside a given contour have \(f \)-costs less than or equal to the contour value.
 - for \(h(n) = 0 \) we obtain circles around the start
 - for more accurate \(h(n) \) we use, the bands will stretch toward the goal state and become more narrowly focused around the optimal path.
 - A* expands all nodes such that \(f(n) < C^* \) on the contour
 - A* can expand some nodes such that \(f(n) = C^* \)
 - the nodes \(n \) such that \(f(n) > C^* \) are never expanded
 - the algorithm A* is optimality efficient for any given consistent heuristic

Time complexity:
- A* can expand an exponential number of nodes
 - this can be avoided if \(|h(n) - h^*(n)| \leq O(\log h^*(n)) \), where \(h^*(n) \) is the cost of optimal path from \(n \) to goal

Space complexity:
- A* keeps in memory all expanded nodes
- A* usually runs out of space long before it runs out of time

Iterative-deepening A*

- A simple way to decrease memory consumption is iterative deepening.

Algorithm IDA*

- the search limit is defined using the cost \(f(n) \) instead of depth
- for the next iteration we use the smallest value \(f(n) \) of node \(n \) that exceeded the limit in the last iteration
- frequently used algorithm

Recursive best-first search

- Let us try to mimic standard best-first search, but using only linear space.
 - the algorithm stops exploration if there is an alternative path with better cost \(f(n) \)
 - when the algorithm goes back to node \(n \), it replaces the value \(f(n) \) using the cost of successor’s (remembers the best leaf in the forgotten subtree)
- If \(h(n) \) is an admissible heuristic then the algorithm is optimal.
- Space complexity \(O(bd) \)
- Time complexity is still exponential (suffers from excessive node re-generation)
Recursive BFS - example

1. After expansion of Arad, Sibiu, Rimnicu Vilcea.

2. The path from Rimnicu Vilcea now seems too expensive, go back to the closest neighbour – Fagaras.

3. The path through Fagaras is now worse, go back to Rimnicu Vilcea and expand the best successor.

Simplified memory-bounded A* - example

• Assume memory for three nodes only.
• If there is enough memory to store an optimal path then SMA* find optimal solution.
• Otherwise it finds the best path with available memory.
 – If the cost of J would be 19, then this is optimal goal, but the path to it can be stored in memory.

IDA* and RBFS do not exploit available memory!
• This is a pity as the already expanded nodes are re-expanded again (waste of time)
• Let us try to modify classical A*

Looking for heuristics

How to find admissible heuristics?

Example: 8-puzzle
• 22 steps to goal in average
• branching factor around 3
• (complete) search tree: $3^{22} \approx 3.1 \times 10^{10}$ nodes
• the number of reachable states is only $9!/2 = 181440$
• for 15-puzzle there are 10^{13} states
• We need some heuristic, preferable admissible
 – $h_1 =$ „the number of misplaced tiles“ = 8
 – $h_2 =$ „the sum of the distances of the tiles from the goal positions“ = $3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18$
 a so called Manhattan heuristic
 – the optimal solution needs 26 steps

function SMA(problem) returns a solution sequence:
inputs: problem, a problem
static: Queue is a queue of nodes ordered by f-cost
Queue = MAKEQUEUE(MAKE-INITIAL-STATE(problem))
loop:
 if Queue is empty then return failure
 s = dequeue from Queue
 if Goal(s) then return sequence
 s = NEXT SUCCESSORS(s)
 f(s) = cost of s + heuristic(s)
 if f(s) < f(parent(s))
 insert s into Queue
 else
 if memory is full then
 drop the worst node (if there are such nodes)
 update f-value of forgotten node to its parent
 Path from root to this non-goal node can be stored in memory, hence no optimal path through this node can be found.

Simplified memory-bounded A* example
• Assume memory for three nodes only.
• If there is enough memory to store an optimal path then SMA* find optimal solution.
• Otherwise it finds the best path with available memory.
 – If the cost of J would be 19, then this is optimal goal, but the path to it can be stored in memory!
Performance of heuristics

How to characterize the quality of a heuristic?

Effective branching factor b^*

- Let the algorithm needs N nodes to find a solution in depth d
- b^* is a branching factor of a uniform tree of depth d containing $N+1$ nodes

$$N + 1 = 1 + b^* + (b^*)^2 + \ldots + (b^*)^d$$

Example:

- 15-puzzle
- the average over 100 instances for each of various solution lengths

<table>
<thead>
<tr>
<th>Search Cost</th>
<th>Effective Branching Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.47</td>
</tr>
<tr>
<td>2</td>
<td>2.87</td>
</tr>
<tr>
<td>3</td>
<td>3.06</td>
</tr>
<tr>
<td>4</td>
<td>3.26</td>
</tr>
<tr>
<td>5</td>
<td>3.45</td>
</tr>
<tr>
<td>6</td>
<td>3.64</td>
</tr>
<tr>
<td>7</td>
<td>3.84</td>
</tr>
<tr>
<td>8</td>
<td>4.03</td>
</tr>
<tr>
<td>9</td>
<td>4.23</td>
</tr>
<tr>
<td>10</td>
<td>4.43</td>
</tr>
<tr>
<td>11</td>
<td>4.64</td>
</tr>
<tr>
<td>12</td>
<td>4.84</td>
</tr>
<tr>
<td>13</td>
<td>5.05</td>
</tr>
<tr>
<td>14</td>
<td>5.25</td>
</tr>
</tbody>
</table>

Dominance

- Is h_2 (from 8-puzzle) always better than h_1 and how to recognize it?
 - notice that $\forall n h_2(n) \geq h_1(n)$
 - We say that h_2 dominates h_1
 - A* with h_2 never expands more nodes than A* with h_1
 - A* expands all nodes such that $f(n) < C^*$, i.e. $h(n) < C^* - g(n)$
 - In particular if it expands a node using h_2, then the same node must be expanded using h_1

- It is always better to use a heuristic function giving higher values provided that
 - the limit $C^* - g(n)$ is not exceeded (then the heuristic would not be admissible)
 - the computation time is no too long

Can an agent construct admissible heuristics for any problem?

Yes via problem relaxation!

- relaxation is a simplification of the problem such that the solution of the original problem is also a solution of the relaxed problem (even if not necessarily optimal)
- we need to be able to solve the relaxed problem fast
- the cost of optimal solution to a relaxed problem is a lower bound for the solution to the original problem and hence it is an admissible (and monotonic) heuristic for the original problem

- Example (8-puzzle)
 - A tile can move from square A to square B if:
 - A is horizontally or vertically adjacent to B
 - B is blank
 - possible relaxations (omitting some constraints to move a tile):
 - a tile can move from square A to square B if A is adjacent to B (Manhattan distance)
 - a tile can move from square A to square B if B is blank
 - a tile can move from square A to square B (heuristic h_1)

Relaxation

Another approach to admissible heuristics is using a pattern database

- based on solution of specific sub-problems (patterns)
- by searching back from the goal and recording the cost of each new pattern encountered
- heuristic is defined by taking the worst cost of a pattern that matches the current state
- Beware! The "sum" of costs of matching patterns need not be a admissible (the steps for solving one pattern may be used when solving another pattern).

If there are more heuristics, we can always use the maximum value from them (such a heuristic dominates each of used heuristics).