Artificial Intelligence

+ Recall that we are looking for (the shortest) path from the
initial state to some goal state.

» Which information can help the search algorithm?
— For example, the length of path to some goal state.
— However such information is usually not available (if it is available
then we do not need to do search). Usually some evaluation

function f(n) is used to evaluate ,quality” of node n based on the
length of path to the goal.

— best-first search
» The node with the smallest value of f(n) is used for expansion.

— There are search algorithms with different views of f(n). Usually
the part of f(n) is a heuristic function hfn) estimating the length
of the shortest (cheapest) path to the goal state..

« Heuristic functions are the most common form of additional ’
information given to search algorithms |

» We will assume that h(n) = 0 < n is goal. J
A
ARy

S
S

» Uninformed (blind) search algorithms can
find an (optimal) solution to the problem,
but they are usually not very efficient.

« Informed (heuristic) search algorithms
can find solutions more efficiently thanks to
exploiting problem-specific knowledge.

— How to use heuristics in search?
« BFS, A*, IDA*, RBFS, SMA*

— How to build heuristics?
» relaxation, pattern databases

« Letus try to exPand first the node that is closest to some
goal state, i.e. f(n) = h(n).
— greedy best-first search algorithm

Example (path Arad — Bucharest):
— We have a table of direct distances from any city to Bucharest.
— Note: this information was not part of the original problem

formulation!

Arad 366 Mehadia 241
Bucharest 0 Neamt 2%
Crajova 160 Oradea 3%
Dobreta 42 Pitesti 100
Eforie 161 Rimmicu Vikea 103
Fagaras 176 Sibiu 253
Giurgin 77 Timiscara 320
Hirsova 151 Urziceni 0
Iaxsi 226 Vaslai 199
Lugoj 244 Zerind 374

>
T
32
356 380 3 Nejkratsi cesta?
L

* Let us now try to use f(n) = g(n) + h(n)

» We already know that the greedy algorithm may not
4 ('i-. yas v — Recall that g(n) is he cost of path from root to n

find the the optimal pat

+ Can we at least always find some path? — probably the most popular heuristic search algorithm
— If we expand first the node with the smallest cost then the
algorithm may not find any solution. — f(n) represents the cost of path through n
Example: path Iasi — Fagaras — the algorithm does not extend already long paths

— Go to Neamt, then back to Iasi, Neamt, ...

— We need to detect repeated visits in cities! o
d Tim m I xi m Auu- ia:q' - ot — H7=T181320 449751374

e complexity O(b™), -

where m is the maximal depth ..
+ Memory complexity O(b™) /
+ A good heuristic function ’ A NG

can significantly decrease I
the practical complexity. Terscn i

Neamt 646=280+366 671=231+380

501=338+253 450=45040 526=366+ 160 553-300+253

T @
418=H1840 615=455+160 607=414+193

What about completeness and optimality of A*?

First a few definitions: - If h(n) is an admissible heuristic then the
— admissible heuristic h(n) algorithm A* in TREE-SEARCH is optimal.
* h(n) < ,,th t of the ch t path fi t ™
. argll)ptimist?ec(\:/(i)esw ((,the ;gcorﬁﬁr?leasss[:;es E:?J:lttgr (?ogtotTmn the real one) — in other words — the first eXpanded goal IS Optlmal
« function f(n) in A* is a lower estimate of the cost of path through n — Let G2 be sub-optimal goa| from the fringe and C* be
— monotonous (consistent) heuristic h(n) the optimal cost

« let n' be a successor of n via action a and c(n,a,n") be the transition cost
- h(n) = c(n,a,n") + h(n") (n)
« this is a form of triangle inequality

+ f(G,) = 9(G,) + h(G,) = g(G,) > C, because h(G,) = 0
| — Let n be a node from the fringe and being on the

;”/' hzn/ -
Monotonous heuristic is admissible. n \ optlmal path
let ny, ny,..., N be the optimal_ path from n, to goal n,, then ‘\, « f(n) = g(n) + h(n) < C*, via admissibility of h(n) _
h(ni) - h(ni+1) = c(nilailni+1)l via monotony @ _ tO ether
h(n,) = =iy, 1 (N3, N;,4), after ,sum® gf() = C* < f(G,)
For a monotont?‘us heuristic the values of f(n) are not decreasing . Eh = | 'thz ! ¢ d ()/
over any path. _ I.e., the algorithm must eXpand n \
Let n' be a successor of n, i.e. g(n") = g(n) + c(n,a,n"), then before G2 and this way it finds o b
f(n') = g(n") + h(n') = g(n) + c(n,a,n") + h(n*) = g(n) + h(n) = f(n) O

the optimal path.

« For non-decreasing function f(n) we can draw contours in the state

. If h(l‘l) is a monotonous heuristic then the %at g(ctct]ﬁtgggsglgglde a given contour have f-costs less than or equal
algorithm A* in GRAPH-SEARCH is optimal. — for h(n) = 0 we obtain circles around the start
— Possible problem: reaching the same state for the second - Q?Ie?gﬂr?o%gfdratﬁ%rz;(ga)lvgﬁnfesg’nfjhgebc%ﬁg wil g
time using a better path — classical GRAPH-SEARCH more narrowly focuSed around the optimal path. | [>_"="§
ignores this second path! T
— A possible solution: selection of better from both paths T

A* expands all nodes such that f(n) < C* on the contour
— A¥* can expand some nodes such that f(n) = C*
— the nodes n such that f(n) > C* are never expanded

leading to a close node (extra bookkeeping) or using
monotonous heuristic.

» for monotonous heuristics, the values of f(n) are not decreasing — the algorithm A* is optimality efficient for any given consistent heuristic
over any path Tin/'_|\§ complexi(tjy: il ber of nod

+ A* selects for expansion the node with the smallest value of f(n), Can €xpand an eéxponential nUMber or nodes)
i.e., the values f(m) of other open nodes m are not smaller, - E*Elts.r%aa? é’ﬁﬁ‘gﬁé‘jn?‘jr] il g((;‘a)l'h*(”ﬂ = O(log h*(n)), where h*(n) is the cost of
i.e., among all “open” paths to n there cannot be a shorter path lexity:
than the path just selected (no path can shorten) Space complexity:

A* keeps in memory all expanded nodes

« hence, the first closed goal node is optimal A* usually runs out of space long before it runs out out of time

: * Let us try to mimic standard best-first search, but using only linear
A simple way to decrease memory space | I, | .
. s . . — the algorithm stops exploration if there is an alternative path with better
consumption is iterative deepening. cost f(n)
— when the algorithm goes back to node n, it replaces the value f(n) using
- * the cost of successors (remembers the best leaf in the forgotten subtreg)
° AIgOI’Ithm IDA + If h(n) is an admissible heuristic then the algorithm is optimal.
_ R : + Space complexity O(bd)
e e et souion sequence th(.e search limit is defined « Time complexity is still exponential (suffers from excessive node
SR i e e o using the cost f(n) re-generation)
ot Mz Moo Seproblend instead of depth
I/(':f)":";:/' Cost(wor) . . nction - . -S (problem) rns a solution, or failure
]f‘r ‘imufDl—‘S—(‘mvmmrfrr:/‘f—lflvtlt) - for the neXt Iteratlon We o :gFSl?2$;§:7tZ};4iisl£]:£gR[)S;INEI:IRACLPfSZ”)rATElPro‘b‘j;:ln])?oc) I o
b i use the smallest value function RBFS(problem, node, f_limit) returns a solution, or failure and anew f-cost limit
f(n) of node n that e
1 fimit for the next contour, initially 0o exceeded the ||m |t N the ;f suz:r:f;lssoirs is empty tht(tir‘l)return failure, co
{71 H . or each s successors
; |aSt Iteratlon fls) «max(g(s) + h(s), f[node])
. repeat
- fl’equent'y used algorlthm best < the lowest f-value node in successors

if f[best] > f-limit then return failure, f[best]
alternative «— the second-lowest f-value among successors

result, f[best] < RBFS(problem, best, min(f_limit, alternative))
if result # failure then return result

2. The path from Rimnicu Vilcea now segms too
expensive, go back to thes closest neigjfbour —

Fagaras
a more accurate cost is stored for Rifpicu Vilcea

3. The path through Fagaras is now worse, go back
to Rimnicu Vilcea and expand the best successor-_[55
Pitesti

» Assume memory for
three nodes only.

« If there is enough
memory to store an
optimal path then SMA*
find optimal solution.

 Otherwise it finds the
best path with available
memory.
— If the cost of J would be
19, then this is optimal
goal, but the path to it
can be stored in memory!

« IDA* and RBFS do not exploit availably memory!

 This is a pity as the already expanded nodes are re-
expanded again (waste of time)

« Let us try to modify classical A*
— when memory is full,

drop the worst leaf

function SMA*(problem) returns a solution sequence .
inputs: problem, a problem node — the node Wlth
static: Queue, a queue of nodes ordered by f-cost the hlg heSt f_va | ue (If
Queue + MAKE-QUEUE({ MAKE-NODE(INITIAL-STATE[problem])}) there are SUCh nOd es
loop do

if Queueis empty then return failure then d rop the
n & deepest least-f-cost node in Queue shallowest node)

if GOAL-TEST(n) then return success
§ ¢ NEXT-SUCCESSOR(n)
if s is not a goal and is at maximum depth then

Path from root to this non-

goal node can be stored in - S|m||ar|y tO RBFS baCk
memory, hence no optimal up the Value Of the

f(s) &0 path through this node can -
alse be found. forgotten node to its
f(s) < MaX(f(n), g(s)+h(s))
if all of n’s successors have been generated then pa rent

update n’s f-cost and those of its ancestors if necessary
if SUCCESSORS(n) all in memory then remove n from Queue
if memory is full then

delete shallowest, highest-f-cost node in Queue

remove it from its parent’s successor list

insert its parent on Queue if necessary
insert s on Queue

end

How to find admissible heuristics?

. 8. an
Example: 8-puzzle ool
a

+ 22 steps to goal in average
« branching factor around 3 E] p—
+ (complete) search tree: 322 = 3,1 x 1019 nodes
 the number of reachable states is only 91/2 = 181 440
« for 15-puzzle there are 1013 states
« We need some heuristic, preferable admissible

— h; = ,the number of misplaced tiles"

=8
»the sum of the distances of the tiles from the goal positions™
=3+1+2+2+2+3+3+2=18
a so called Manhattan heuristic

— the optimal solution needs 26 steps

-]
[=Jl-]~]

_h2

How to characterize the quality of a heuristic?
Effective branching factor b*

— Let the algorithm needs N nodes to find a
solution in depth d
— b* is a branching factor of a uniform tree of
depth d containing N+1 nodes
N+1 =1+ b* + (b*)? + ... + (b*)d

Example:
-_ 15-puZZ|e ’rl IDS SZ‘;:]COS[A'(hg) IDSEﬂ.ecmc/lj'Tf'rlc;fngkﬁj\%ﬁy
— the average over 100 & & & & w2

instances for each of . i
various solution lengths & ™™ = & 7 f

555E888 71

Can an agent construct admissible heuristics for any
problem?

Yes via problem relaxation!

— relaxation is a simplification of the problem such that the solution of
the original problem is also a solution of the relaxed problem (even
if not necessarily optimal)

— we need to be able to solve the relaxed problem fast

— the cost of optimal solution to a relaxed problem is a lower bound
for the solution to the original problem and hence it is an admissible
(and monotonous) heuristic for the original problem

+ Example (8-puzzie)
— A tile can move from square A to square B if:
» Ais horizontally or vertically adjacent to B
» Bis blank
- p055|ble relaxations (omitting some constraints to move a tile):
a tile can move from square A to square B if A is adjacent to B
(Manhattan distance)
« a tile can move from square A to square B if B is blank
« a tile can move from square A to square B (heuristic h,)

 Is hz (from 8-puzzle) always better than h1 and
how to recognize it?
— notice that ¥n h,(n) = h;(n)
— We say that h, dominates h,

— A* with h, never expands more nodes than A* with h;,
« A* expands all nodes such that f(n) < C*, tj. h(n) < C* - g(n)

+ In particular if it expands a node using h,, then the same node
must be expanded using h,

It is always better to use a heuristic
function giving higher values provided that
— the limit C* - g(n) is not exceeded (then the
heuristic would not be admissible)
— the computation time is no too long

Another approach to admissible heuristics is using a
pattern database
— based on solution of specific sub-problems (patterns)

— by searching back from the goal oBan o
and recording the cost of each S FIEE
new pattern encountered =T L]

— heuristic is defined by taking
the worst cost of a pattern that matches the current state

— Beware! The “sum” of costs of matching patterns need not be
a admissible (the steps for solving one pattern may be used
when solving another pattern).

If there are more heuristics, we can always use the
maximum value from them (such a heuristic
dominates each of used heuristics).

