Chapter 3:
Solving Problems by Searching
Uninformed Search

Edited by Neng-Fa Zhou

* How does an agent can find a sequence of
actions that achieves its goals with minimum
cost?

* This is the general task of problem solving and
is typically performed by searching through an
internally modeled space of world states.

States
The initial state

ACTIONS(s): the set of actions that can be
executed in state s

The transition model: s = RESULT(s,a)
The goal test
A path cost function

e Given:
— An initial state of the world

— A set of possible possible actions or operators
that can be performed.

— A goal test that can be applied to a single state of
the world to determine if it is a goal state.

* Find:
— A solution stated as a path of states and operators

that shows how to transform the initial state into
one that satisfies the goal test.

* State space
— The initial state and set of operators implicitly

* Step Cost
— Each individual action has an associated cost.

 Path cost

— A function that assigns a cost to a path, typically
by summing the cost of the individual operators in
the path.

* Optimal Solution

— Find a lowest-cost path.

Oradea

Meamt

Vaslui

Y
| \ Rimnicu Vilcea

n:[imisoara /
T A f},a"
. | . .
- n Lugoj \ H“*H& Pitesti /

I II' | /
|

I _ \ #_PD_ Hirsova

[0 Mehadia III " Urziceni \

| |

I I'. / Bucharest

Dobreta n_______ '. h

- Hcraiova .

Efori
n Giurgiu ore

* Find a route from Arad to Bucharest

i R P
I A -‘_-—ﬁ{::! R
g |eof o |8 |\
— L Ty
—_—
A /’;/f SHM“H
T B
~ LS ~1 ~ $
[i@‘ o ;A&)R Lf ;fg i{@ R
o s L i e/ I_J‘ b L o2 =
2 “‘*-‘_‘_ﬂ_ /’ |
‘\L) 5 H{}{//s Q_/
8 e iy 5
P R " L~
(=] =l)
- %
e » 2-F 3
O Sl
he] S

e States: An environment with n locations has
nx27n states.

* |nitial state, actions, transition model, goal
test, path cost

3 2 7 6

Start State Goal State

Example Problems: 8-Queens Problem

Knuth’s Conjecture

— Starting with the number 4, a sequence of
factorial, square root, and floor operations will
reach any desired positive integer.

Cryptarithmetic
— SEND + MORE = MONEY

Water Jugs Problem
Missionaries and Cannibals Problem

Route finding

Travelling salesman problem
VLSI layout

Robot navigation

Automatic assembly sequencing
Protein design

* A state can be expanded by generating all
states that can be reached by applying a legal
operator to the state.

» State space can also be defined by a successor
function that returns all states produced by
applying a single legal operator.

* A search tree is generated by generating
search nodes by successively expanding states
starting from the initial state as the root.

* Asearch node in the tree can contain
— n.STATE: Corresponding state
— n.PARENT: Parent node
— n.ACTION: Operator applied to reach this node

— n.PATH-COST: g(n), path cost of path from initial
state to node

(a) The initial state Arad

(h) After expanding Arad Arad
/ h.."’"-\-._
T T
7 T
— S

Sibiu Timisoara Zerind
(c) After expanding Sibiun Arad

Sibiu Timisoara Zerind

N
\\ -H--""‘---u
Arad Fagaras Oradea Rimnicu Vilcea

* Search algorithms all share this basic tructure;
they vary in how they choose which state to
expand next—the so-called search strategy.

function TREE-SCARCII problem) returns a solution, or failure
mitialize the frontier using the mutial state of problem
loop do
if the frontier 1s empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the correspoﬂding solution
expand the chosen node, adding the resulting nodes to the frontier

Graph-Search

function GRAPH-SEARCH! proflenm | returns a solution. or failure

mutialize the frontier using the mutial stale of problem

initialize the explored set to be empty

loop do
it the trontier 1s empty then return failure
choose a leat node and remove it from the trontier
if the node contains a gc:al state then return the cc)rrespcnﬂd.ing solution
add the node to the explored set
expand the chosen node. adding the resulting nodes to the frontier

only if not in the frontier or explored set

Completeness (systematic search vs local
search)

Time Complexity
Space Complexity
Optimality

* Blind, exhaustive, brute force, do not guide
the search with any additional information
about the problem

— Breadth-first search
— Uniform Cost Search
— Depth-First Search

— Depth-limited search

— |terative deepening depth-first search

— Bidirectional search

* Heuristic, intelligent, use information about
the problem (estimated distance from a state
to the goal) to guide the search.

— Greedy best-first search
— A* search
— |terative deepening A* (IDA*)

Breadth-first search

Inaction BREADTII-FIRST-SLE ARCH (problem) returns a solution, or failure

node +— a node with STATE = predlilen INITIAL- STATE, PATH-COST =0
if prroblem. GOAL-TEST(node. STATE) then return SOLUTION(n o)
frontier — a FIFO queue with node as the only element
explored « an empty set
loop do
if EMPL Y Y(frantier) then return failure
node +— POPUfrontier) f* chooses the shallowest node in frontier */
add node. STATE 1a caplored
for each action in problem . ACTIONS(n ode. STATE) do
child «— CHILE-NODE(probleri, node , action)
if child . STATE is not in explored or frontier then
if problem (1 OAL- TEST(child.STATE) then return SOLUTION(child)
rontier INSERT(child, frontier)

® . . .

Assume there are an average of b successors
to each node, called the branching factor.

Therefore, to find a solution path of length d
must explore 1+o+p"+5 +..+5° q0des.

Plus need bAd nodes in memory to store
leaves in queue.

Depth Nodes Time Memory

2 110 11 milliseconds 107 kilobytes
4 11,110 I1 milliseconds 10.6 megabytes
6 1C | 1 seconds | gigabyte
8 10 2 minutes 103 gigabytes
10 10'e 3 hours 10 terabytes
12 10" 13 days | petabyte
14 10" 3.5 years 99 petabytes

16 10 350 years 10 exahyles

™" E T (aa b 1 - 1l i~ 1 :1 i~ g 1 i

Like breadth-first except expands the node
with lowest path cost, g(n).

S@
0 S
A./BI\C'
1 5 15
S
A
[] A B C
1 10 5 15
G S
SO G 11
15 5
- A B C
C 15
G G

(a) (b)

* DFS expands the deepest unexpanded node
first. Implemented using a stack (LIFO).

@ ® ® ®
It A
FAR /N
kY
\\
O O ® ® , Y
I
I
I
;’f
® O ® o
/A
I \\
.-"j \\
®@ O
e ® ® ®
Y
.-"f \\
/! \
.-"j \\
® o o @ ® 0 © 0
f.-" A
K
/
!
e @ ® o ® o e @
_.-’"f \'\
! kY
A
\
\

Inaction BREADTII-FIRST-SLE ARCH (problem) returns a solution, or failure

node +— a node with STATE = pmh": 1 INITIAL- STATE, PATH-COST =0
if prublem GOAL-TEST(node. STATE) then return SOLUTION(7axle)
frontier — a FIFO queue with node as the only element
explored « an empty set
loop do
if EMPL Y Jrantier) then return failure
node +— POPUfrontier) f* chooses the shallowest node in frontier */
add node. STATE 1a caplored
for each action in problem . ACTIONS(n ode. STATE) do
child «— CHILE-NODE(probleri, node , action)
if child . STATE is not in explored or frontier then
if problem (1 OAL- TEST(child.STATE) then return SOLUTION(child)
frontier INSERT(child, frontier)

BREADTH-FIRST-SEARCH -> DEPTH-FIRST-SEARCH

FIFO -> LIFO

Not guaranteed to be complete
Not guaranteed optimal
Time complexity in worst case is still O(b~d)

Space complexity is only O(bm) where m is
maximum depth of the tree.

* Calls depth-first search with increasing depth
limits until a goal is found.

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution sequence
inputs: problem. a problem

for depth + 0to~c do

if DEPTH-LIMITED-SEARCH(problem, depth) succeeds then return its result
end
return failure

— completeness (when the branching factor is finite)

-0 g:lmaléwhen the path cost is a non-decreasing function of the depth
he no

- It::w memory consumption O(bd)
— What about time complexity?
« db!+ (d-1)b2 + ... + 3b%2 +2b%1 + 1bd = O(b9)

 We can run two simultaneous searches — one
forward from the initial state and the other
backward from the goal (hoping that the two
searches meet in the middle).

e Rational?
bd/2 + hd/2 << b

