Chapter 3: Solving Problems by Searching
Uninformed Search

Edited by Neng-Fa Zhou
• How does an agent can find a sequence of actions that achieves its goals with minimum cost?

• This is the general task of **problem solving** and is typically performed by **searching** through an internally modeled space of world states.
• States
• The initial state
• ACTIONS(s): the set of actions that can be executed in state s
• The transition model: $s' = \text{RESULT}(s,a)$
• The goal test
• A path cost function
Problem Solving Task

• Given:
 – An **initial state** of the world
 – A set of possible actions or **operators** that can be performed.
 – A **goal test** that can be applied to a single state of the world to determine if it is a goal state.

• Find:
 – A **solution** stated as a **path** of states and operators that shows how to transform the initial state into one that satisfies the goal test.

• State space
 – The initial state and set of operators implicitly
• **Step Cost**
 – Each individual action has an associated cost.

• **Path cost**
 – A function that assigns a cost to a path, typically by summing the cost of the individual operators in the path.

• **Optimal Solution**
 – Find a lowest-cost path.
Example Problems: Route Finding

- Find a route from Arad to Bucharest
Example Problems: The Vacuum World

• States: An environment with n locations has \(n \times 2^n \) states.
• Initial state, actions, transition model, goal test, path cost
Example Problems: 8-Puzzle

Start State

Goal State
Example Problems: 8-Queens Problem
• Knuth’s Conjecture
 – Starting with the number 4, a sequence of factorial, square root, and floor operations will reach any desired positive integer.

• Cryptarithmetic
 – SEND + MORE = MONEY

• Water Jugs Problem

• Missionaries and Cannibals Problem
• Route finding
• Travelling salesman problem
• VLSI layout
• Robot navigation
• Automatic assembly sequencing
• Protein design
• A state can be **expanded** by generating all states that can be reached by applying a legal operator to the state.

• State space can also be defined by a **successor function** that returns all states produced by applying a single legal operator.

• A **search tree** is generated by generating search nodes by successively expanding states starting from the initial state as the root.
The Tree-Node Data Structure

• A search node in the tree can contain
 – n.STATE: Corresponding state
 – n.PARENT: Parent node
 – n.ACTION: Operator applied to reach this node
 – n.PATH-COST: \(g(n) \), path cost of path from initial state to node
Search algorithms all share this basic structure; they vary in how they choose which state to expand next—the so-called search strategy.
function Tree-Search(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
 if the frontier is empty then return failure
 choose a leaf node and remove it from the frontier
 if the node contains a goal state then return the corresponding solution
 expand the chosen node, adding the resulting nodes to the frontier
function **Graph-Search**(*problem*) returns a solution, or failure
initialize the frontier using the initial state of *problem*
initialize the explored set to be empty
loop do
 if the frontier is empty then return failure
 choose a leaf node and remove it from the frontier
 if the node contains a goal state then return the corresponding solution
 add the node to the explored set
 expand the chosen node, adding the resulting nodes to the frontier
 only if not in the frontier or explored set
Evaluate Search Algorithm’s Performance

• Completeness (systematic search vs local search)
• Time Complexity
• Space Complexity
• Optimality
• **Blind, exhaustive, brute force**, do not guide the search with any additional information about the problem
 – Breadth-first search
 – Uniform Cost Search
 – Depth-First Search
 – Depth-limited search
 – Iterative deepening depth-first search
 – Bidirectional search
Search Strategies: Informed Search

• **Heuristic, intelligent**, use information about the problem (estimated distance from a state to the goal) to guide the search.
 – Greedy best-first search
 – A* search
 – Iterative deepening A* (IDA*)
In action BREADTH-FIRST-SEARCH (problem) returns a solution, or failure

\[
\begin{align*}
\text{node} & \leftarrow \text{a node with } \text{STATE} = \text{problem.INITIAL-STATE}, \text{PATH-COST} = 0 \\
\text{if } \text{problem.GOAL-TEST}(\text{node}, \text{STATE}) \text{ then return SOLUTION(node)} \\
\text{frontier} & \leftarrow \text{a FIFO queue with node as the only element} \\
\text{explored} & \leftarrow \text{an empty set} \\
\text{loop do} \\
\text{if } \text{EMPTY?}(\text{frontier}) \text{ then return failure} \\
\text{node} & \leftarrow \text{POP}(\text{frontier}) \text{ \(f^*\) chooses the shallowest node in } \text{frontier} \\
\text{add node.STATE to explored} \\
\text{for each action in problem.ACTIONS(node, STATE) do} \\
\text{child} & \leftarrow \text{CHILD-NODE}(\text{problem, node, action}) \\
\text{if child.STATE is not in explored or frontier then} \\
\text{if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)} \\
\text{frontier} & \leftarrow \text{INSERT}(\text{child, frontier})
\end{align*}
\]
• Assume there are an average of b successors to each node, called the \textit{branching factor}.

• Therefore, to find a solution path of length d must explore $1 + b + b^2 + b^3 + \ldots + b^d$ nodes.

• Plus need b^d nodes in memory to store leaves in queue.

<table>
<thead>
<tr>
<th>Depth</th>
<th>Nodes</th>
<th>Time</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>110</td>
<td>0.11 ms</td>
<td>107 kilobytes</td>
</tr>
<tr>
<td>4</td>
<td>11,110</td>
<td>11 ms</td>
<td>10.6 megabytes</td>
</tr>
<tr>
<td>6</td>
<td>10^7</td>
<td>1.1 s</td>
<td>1 gigabyte</td>
</tr>
<tr>
<td>8</td>
<td>10^8</td>
<td>2 min</td>
<td>103 gigabytes</td>
</tr>
<tr>
<td>10</td>
<td>10^{10}</td>
<td>3 h</td>
<td>10 terabytes</td>
</tr>
<tr>
<td>12</td>
<td>10^{12}</td>
<td>13 d</td>
<td>1 petabyte</td>
</tr>
<tr>
<td>14</td>
<td>10^{14}</td>
<td>3.5 y</td>
<td>99 petabytes</td>
</tr>
<tr>
<td>16</td>
<td>10^{16}</td>
<td>350 y</td>
<td>10 exabytes</td>
</tr>
</tbody>
</table>

Fig. 8.12: The data table for Breadth-First Search.
• Like breadth-first except expands the node with lowest path cost, $g(n)$.
• DFS expands the deepest unexpanded node first. Implemented using a stack (LIFO).
In action **BREADTH-FIRST-SEARCH** *(problem)* returns a solution, or failure

\[
\text{node} \leftarrow \text{a node with STATE = } \text{problem.INITIAL-STATE, PATH-COST =0}
\]

if \text{problem.GOAL-TEST(node, STATE)} then return \text{SOLUTION(node)}

\text{frontier} \leftarrow \text{a FIFO queue with node as the only element}

\text{explored} \leftarrow \text{an empty set}

loop do

if \text{EMPTY?(frontier)} then return failure

\text{node} \leftarrow \text{POP(frontier)} \text{ f* chooses the shallowest node in frontier *f}

\text{add node. STATE to explored}

for each action in \text{problem.ACTIONS(node, STATE)} do

\text{child} \leftarrow \text{CHILD-NODE(problem, node, action)}

\text{if child. STATE is not in explored or frontier then}

\text{if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)}

\text{frontier \leftarrow INSERT(child, frontier)}

BREADTH-FIRST-SEARCH -> DEPTH-FIRST-SEARCH

FIFO -> LIFO
Depth-First Properties

- Not guaranteed to be complete
- Not guaranteed optimal
- Time complexity in worst case is still $O(b^d)$
- Space complexity is only $O(bm)$ where m is maximum depth of the tree.
Iterative Deepening

- Calls depth-first search with increasing depth limits until a goal is found.

```plaintext
function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution sequence
    inputs: problem, a problem
    for depth ← 0 to ∞ do
        if DEPTH-LIMITED-SEARCH(problem, depth) succeeds then return its result
    end
    return failure
```

- **completeness** (when the branching factor is finite)
- **optimal** (when the path cost is a non-decreasing function of the depth of the node)
- **low memory** consumption $O(bd)$
- What about **time complexity**?
 - $db^1 + (d-1)b^2 + ... + 3b^{d-2} + 2b^{d-1} + 1b^d = O(b^d)$
• We can run two simultaneous searches – **one forward from the initial state and the other backward from the goal** (hoping that the two searches meet in the middle).

![Diagram of bidirectional search]

• Rational?

\[b^{d/2} + b^{d/2} \ll b^d \]