
Ar#ficial)Intelligence!
!

Roman Barták 
Department of Theoretical Computer Science and Mathematical Logic 

Adversarial Search: Games 

Introduc*on!

•  So far we assumed a single-agent environment, 
but what if there are more agents and some of 
them „playing“ against us? 

•  Today we will discuss adversarial search a.k.a. 
game playing, as an example of a competitive 
multi-agent environment. 

–  deterministic, turn-taking, two-player zero-sum games 
of perfect information (tic-tac-toe, chess) 

•  optimal (perfect) decisions (minimax, alpha-beta) 

•  imperfect decisions (cutting off search) 

–  stochastic games (backgammon) 

Games!

•  Mathematical game theory (a branch of 
economics) views any multi-agent environment as 
a game, provided that the impact of each agent on 
others is significant. 
–  environments with many agents are called economies 

(rather than games) 

•  AI deals mainly with turn-taking, two-player 
zero-sum games (one player wins, the other one 
loses). 
–  deterministic games vs. stochastic games 
–  perfect information vs. imperfect information 
–  Why games in AI? Because games are: 

•  hard to play 
•  easy to model 

(not that many actions) 
•  funny 

Problem!se3ng!

•  We consider two players MAX and MIN 
–  MAX moves first, and then the players take turns moving until 

the game is over 
–  we are looking for the strategy of MAX 

•  Again, we shall see game playing as a search problem: 
–  initial state: specifies how the game is set up at the start 
–  successor function: results of the moves (move, state) 

•  the initial state and the successor function define the game tree 

–  terminal test: true, when the game is over (a goal state) 
–  utility function: final numeric value for a game that ends in 

terminal state (win, loss, draw with values +1, 0, -1) 
•  higher values are better for MAX, while lower values are better for 

MIN 



Game!tree!–!*c6tac6toe!

•  Two players place X and O in an empty square 
until a line of three identical symbols is reached 
or all squares are full. 

All possible moves for player 
placing X. 

Only the goal states are evaluated 
(utility function). 

Op*mal!strategy!

•  Classical search is looking a (shortest) path to a 
goal state. 

•  Search for games is looking for a path to the 
terminal state with the highest utility, but 
MIN has something to say about it. 

•  MAX is looking for a contingent strategy, which 
specifies 
–  MAX’s move in the initial state 
–  MAX’s moves in the states resulting from every possible 

response by MIN 
–  an optimal strategy leads to outcomes at least as 

good as any other strategy when one is playing an 
infallible opponent 

Minimax!value!

•  The optimal strategy can be determined from the 
minimax value of each node computed as follows: 
 MINIMAX-VALUE(n)= 
  UTILITY(n)         if n is a terminal state 
  maxs ∈ successors(n) MINIMAX-VALUE(s)  if MAX plays in n 
  mins ∈ successors(n) MINIMAX-VALUE(s)  if MIN plays in n 

We start with the utility of the terminal states. 

We consider that 
MIN always selects a 
best move. 

MAX is maximizing the worst-
case outcome. 

Algorithm!minimax!

•  Time complexity O(bm) 
•  Space complexity O(bm) 

(b - #actions in states, m - #moves) 

The algorithm assumes that the 
player plays optimally. Otherwise, 
the utility is even higher 



Minimax!for!more!players!

•  For multiplayer games we can use a vector of utility values 
– this vector gives the utility of the state from each player’s 
viewpoint. 

•  Multiplayer games usually involve alliances, whether formal 
or informal, among the players. 
–  Alliances seems to be a natural consequence of optimal strategies 

for each player. 
–  For example, suppose A and B are in weak positions and C is in a 

stronger position. Then it is often optimal for both A and B to attack 
C rather than each other. 
 Of course, as soon as C weakens under the joint onslaught, the 
alliance loses its value. 

The player selects the best move 
based on own attribute in vector. 

Note: each player is 
maximizing a value of own 
attribute in the vector. 

Improving!minimax!

•  The minimax algorithm always finds an optimal strategy, 
but it has to explore a complete game tree. 

•  Can we speed-up the algorithm? 
–  YES! 

We do not need to explore all states, if the are “very bad”. 
–  α-β pruning eliminates branches that cannot possibly influence 

the final decisions. 

x y  

= max(min(3,12,8),min(2,x,y),min(14,5,2)) 
= max(3,min(2,x,y),2) 
= max(3,z,2), where z ≤ 2 
= 3 

MINIMAX value of the 
root does not depend on 
values x and y and hence 
it is not necessary to 
explore these sub-trees. 

≤ 2  

α6β!pruning!6!example!
The first estimate of the 
MINIMAX value of root. 

We can stop evaluation of 
the MIN node when its 
MINIMAX value is worse 
(smaller) than in the parent. 

For the third MIN node 
we can still find a better 
solution. 

We can still find a better 
value for the MIN node in 
the range 〈3,5〉. 

Hmm, it was a false 
hope, the optimum is 3. 

If we explored the nodes in the order 2,5,12, it would be enough to evaluate node 2. 

Algorithm!α6β!



Why!α6β?!

–  α is the value of best (i.e. the 
highest-value) choice we have 
found so far at any choice point 
along the path for MAX 

•  if α is not worse (smaller) than v, MAX 
will never play in the direction to v 
and hence the sub-tree below v does 
not need to be explored 

–  β is the value of best (i.e. the 
lowest-value) choice we have 
found so far at any choice point 
along the path for MIN 

•  we can similarly prune the sub-trees 
for MIN 

Properties: 
•  By cutting off the sub-trees we do not miss optimum. 
•  By „perfect ordering“ we can decrease time complexity to 

O(bm/2), which gives a branching factor √b (b for minimax), 
so we can solve a tree roughly twice as deep as minimax in 
the same amount of time. 

„Imperfect“!strategies!

•  Both minimax and α-β have to search all the 
way to terminal states. 
–  This is not practical for bigger depths (depth = 

#moves to reach a terminal state). 

•  We can cut off search earlier and apply a 
heuristic evaluation function to states in the 
search. 
–  does not guarantee finding an optimal solution, but 
–  can finish search in a given time 

•  Realisation: 
–  terminal test → cutoff test 
–  utility function → heuristic evaluation function EVAL 

Evalua*on!func*on!

•  Returns an estimate of the expected utility of the 
game from a given position (similar to the 
heuristic function h). 

•  Obviously, quality of the algorithm depends on 
the quality of evaluation function. 

Properties: 
–  terminal states must be ordered in the same way as if 

ordered by the true utility function 
–  the computation must not take too long 
–  for nonterminal states, the evaluation function should 

be strongly correlated with the actual chances of 
winning 

•  given the limited amount of computation, the best the 
algorithm can do is make a guess about the final outcome 

•  How to construct such a function? 

Evalua*on!func*on!6!examples!

Expected value 
–  based on selected features of states, we can define 

various categories (equivalence classes) of states 
–  each category is evaluated based on the proportion of 

winning and losing states 
•  EVAL = (0.72 × +1) + (0.20 × -1) + (0.08 × 0) = 0.52 

„Material“ value 
–  estimate the numerical contribution of each feature 

•  chess: pawn = 1, knight = bishop= 3, rook = 5, queen = 9 

–  combine the contributions (e.g. weighted sum) 
•  EVAL(s) = w1 f1(s) + w2 f2(s) + … + wnfn(s) 
•  The sum assumes independence of features! 
•  It is possible to use non-linear combination. 

White moves first 
and Black wins 



Problems!with!cut!off!

•  The situation may change dramatically by assuming 
one more move after the cut-off limit. 

–  quiescent: if the opponent can capture a chess-man 
then the estimate is not stable and it is better to explore 
a few more moves (for example only selected moves) 

•  horizon effect 
–  the unavoidable bad situation can be delayed after the 

cut-off limit (horizon) and hence it is not recognized as a 
bad state 

Identical material value (better for Black) for 
both states, 
but White wins the right position by 
capturing the queen. 

Black has a better material value, but if White 
changes a pawn to a queen, then White wins. 
Black may consider checking the white king so the 
situation does not look so bad. 

Possible!improvements!

•  Singular extension 
–  explore the sequence of moves that are “clearly 

better” than all other moves 
–  a fast way to explore the area after the depth limit 

(quiescent is a special case) 

•  Forward pruning 
–  some moves at a given state are not assumed at all 

(a human approach) 
–  dangerous as it can miss the optimal strategy 
–  safe, if symmetric moves are pruned 

•  Transposition tables 
–  similarly to classical search, we can remember already 

evaluated states for the case when they are reached 
again by a different sequence of moves 

Stochas*c!games!

•  In real life, many unpredictable external events can 
put us into unforeseen situations. 

•  Games mirror unpredictability by including a 
random element, such as throwing of dice. 

Backgammon 
–  the goal is to move all one’s pieces 

off the board (clockwise) 
–  who finishes first, wins 
–  dice are rolled to determine the 

legal moves 
•  the total travelled distance 

There are four legal moves for White: 
(5-10,5-11), (5-11,19-24), (5-10,10-16), (5-11,11-16) 

Playing!stochas*c!games!

•  Game tree is extended with chance nodes (in addition to MAX and MIN 
nodes) describing all rolls of dice. 
–  36 results for two dice, 

21 without symmetries (5-6 and 6-5) 
–  chance for double is 1/36, 

other results 1/18 

•  Instead of the MINIMAX value, we use 
expected MINIMAX value (based on probability of chance actions): 
 EXPECTIMINIMAX-VALUE(n)= 
  UTILITY(n)    if n is a terminal node 
  maxs ∈ successors(n) EXPECTMINIMAX-VALUE(s)  if MAX plays in n 
  mins ∈ successors(n) EXPECTMINIMAX-VALUE(s)  if MIN plays in n 
  ∑s ∈ successors(n) P(s) . EXPECTMINIMAX(s)    if n is a chance node 

Chance nodes are added to each layer, where 
the move is influenced by randomness. 
MAX rolls the dice here. 



Stochas*c!games!!6!discussion!

•  Beware of the evaluation function (for cut-off) 
–  the absolute value of nodes may play a role 
–  the values should be a linear transformation of expected utility in 

the node 

•  Time complexity O(bmnm), where n is the number of 
random moves 
–  it is not realistic to reach a bigger depth especially for larger 

random branching 

•  Using cut-off à la α-β 
–  we can cut-off the chance nodes 

if the evaluation function is bounded 
–  the expected value can be bounded 

when the value is not yet computed 

The left tree is better for A1 while the 
right tree is better for A2, though the 
order of nodes is identical. 

Card!Games!

•  Card games may look like the stochastic games, but the 
dice are rolled just once at the beginning! 

•  Card games are an example of games with partial 
observability (we do not see opponent’s cards). 

Example: card game “higher takes” with open cards 
Situation 1: MAX: ♥6 ♦6 ♣9 8  MIN: ♥4 ♠2 ♣10 5 
1.  MAX gives ♣9, MIN confirms colour ♣10  MIN wins 
2.  MIN gives ♠2, MAX gives ♦6   MIN wins 
3.  MAX gives ♥6, MIN confirms colour ♥4  MAX wins 
4.  MIN gives♣5, MAX confirms colour ♣8  MAX wins 
–  ♣9 is the optimal first move for MAX 
Situation 2: MAX: ♥6 ♦6 ♣9 8  MIN: ♦4 ♠2 ♣10 5 
–  a symmetric case, ♣9 is again the optimal first move for MAX 
Situation 3: MIN hides the first card (♥4 or ♦4), what is the optimal 

first move for MAX now? 
–  Independently of ♥4 and ♦4 the optimal first move 

was ♣9, so it is the first optimal move now too. 
–  Really? 

Incomplete!informa*on!
Example: how to become rich (a different view of cards) 
•  Situation 1: Trail A leads to a gold pile while trail B leads to a road-

fork. Go left and there is a mound of diamonds, but go right and a 
bus will kill you (diamonds are more valuable than gold). Where to 
go? 
–  the best choice is B and left 

•  Situation 2: Trail A leads to a gold pile while trail B leads to a road-
fork. Go right and there is a mound of diamonds, but go left and a 
bus will kill you. Where to go? 
–  B a right 

•  Situation 3: Trail A leads to a gold pile while trail B leads to a road-
fork. Select the correct side and you will reach a mound of diamonds, 
but select a wrong side and a bus will kill you. Where to go? 
–  a reasonable agent (not risking the death;-) goes A 

•  This is the same case as in the previous slide. We do not know what 
happens at the road-fork B. In the card game, we do not know which 
card (♥4 or ♦4) the opponent has, 50% chance of failure. 

•  Lesson learnt: We need to assume information that we will have at 
a given state (the problem of using ♣9 is that MAX 
plays differently when all cards are visible). 

Umělá inteligence I, Roman 
Barták 

Computer!games–!the!state!of!the!art!

•  Chees 
–  1997 Deep Blue wins over Kasparov 3.5 – 2.5 
–  2006 „regular“ PC (DEEP FRITZ) beats Kramnik 4 – 2 

•  Checkers 
–  1994 Chinook became the official world champion 
–  29. 4. 2007 solved – optimal policy leads to draw  

•  Go 
–  branching factor 361 makes it challenging 
–  today computers play at a master level (using Monte Carlo 

methods based on the UCT scheme) 

•  Bridge 
–  2000 GIB was twelve at world championship 
–  Jack and Wbridge5 play at the level of best players 


