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Brains

10 neurons of > 20 types, 1014 synapses, 1ms—10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axonal arborization

O
\ Axon from another cell

Synapse
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Nucleus ' /
Synapses
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McCulloch—Pitts “unit”

Output is a “squashed” linear function of the inputs:

a; «— g(in;) =g (Zjo;iaD

Bias Weight

——————
I nput Input  Activation Output
Links Function Function Output Links

A gross oversimplification of real neurons, but its purpose is
to develop understanding of what networks of simple units can do
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Activation functions

q(iry) , 9in)
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(a) is a step function or threshold function

(b) is a sigmoid function 1/(1 + e™")

Changing the bias weight 11/, ; moves the threshold location
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Implementing logical functions

Wo =15 WO =05 WO =-05
W, o T W1}~
/ /
W2 =1 W2 =1
AND OR NOT

McCulloch and Pitts: every Boolean function can be implemented
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Network structures

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (W, ; = W ;)
g(x)=sign(x), a;= £ 1; holographic associative memory
— Boltzmann machines use stochastic activation functions,
~ MCMC in Bayes nets
— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.
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Feed-forward example

Feed-forward network = a parameterized family of nonlinear functions:

as = g(Wss-a3+ Wis-as)
= gWs5-g(Wis-a14+Was-as)+Wys-g(Wig- a1+ Woy-ay))

Adjusting weights changes the function: do learning this way!
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Single-layer perceptrons
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Output units all operate separately—no shared weights

Adjusting weights moves the location, orientation, and steepness of cliff
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Expressiveness of perceptrons

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc., but not XOR

Represents a linear separator in input space:

Z]’Wjﬂf]‘>0 or W-x>0

X1\ X1 4 X1 4
10 ® le@ ® le® @)
?
00O O— 0 0 O———e—
0 1 X 0) 1 X 0 1 X
(3) X, and X, (b) X, or X, (C) X, xor X,

Minsky & Papert (1969) pricked the neural network balloon
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Perceptron learning

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is

E = §E'r’r — §(y — hw(x))?,
Perform optimization search by gradient descent:
OF OFErr o ;
oW = Err x o = Brr x A, (y — 9<2j:oWjiﬁj)>

= —FErr x ¢'(in) X z;
Simple weight update rule:
W; — W;+ax Err x ¢'(in) X x;

E.g., +ve error = increase network output
= increase weights on +ve inputs, decrease on -ve inputs
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Perceptron learning contd.

Perceptron learning rule converges to a consistent function
for any linearly separable data set
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Training set size - MAJORITY on 11 inputs Training set size -

Perceptron learns majority function easily, DTL is hopeless

RESTAURANT data

DTL learns restaurant function easily, perceptron cannot represent it
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Multilayer perceptrons

a;

numbers of hidden units typically chosen by hand
Output units

Layers are usually fully connected;
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Expressiveness of M LPs

All continuous functions w/ 2 layers, all functions w/ 3 layers

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface

Proof requires exponentially many hidden units (cf DTL proof)
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Back-propagation learning

Output layer: same as for single-layer perceptron,
Wj)i — Wj)i +a X aj; X A,

where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:

Aj=g'(inj) S WA .
Update rule for weights in hidden layer:

WkJHWkJ—I—&XakXA]’.

(Most neuroscientists deny that back-propagation occurs in the brain)
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Back-propagation derivation

The squared error on a single example is defined as

1
L= 52(% —a;)?
where the sum is over the nodes in the output layer.
oF Oa; dg(in;)
aWj,i - _<yz T az)(f?Wj’i - <y7 aZ) aWj,?ﬁ
din; 0
— _<yz — aZ)g%mé)@Wj?i — _(yi — Ch)d(”%)m (%: Wj,iaj)
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Back-propagation derivation contd.
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Back-propagation learning contd.

At each epoch, sum gradient updates for all examples and apply

Training curve for 100 restaurant examples: finds exact fit
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Typical problems: slow convergence, local minima
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Back-propagation learning contd.

Learning curve for MLP with 4 hidden units:
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MLPs are quite good for complex pattern recognition tasks,
but resulting hypotheses cannot be understood easily
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Handwritten digit recognition

O/ HIM| 56|78
2011272147678

3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error
LeNet: 768-192-30-10 unit MLP = 0.9% error

|0

Current best (kernel machines, vision algorithms) = 0.6% error
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Summary

Most brains have lots of neurons; each neuron == linear—threshold unit (?)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, fraud detection, etc.

Engineering, cognitive modelling, and neural system modelling
subfields have largely diverged
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