Modeling and Solving AI Problems in Picat

Roman Barták, Neng-Fa Zhou
Pair up all the matching numbers on the grid with single continuous lines (or paths).

- The lines cannot branch off or cross over each other, and
- the numbers have to fall at the end of each line (i.e., not in the middle).

It is considered all the cells in the grid are filled.
Solved with the sat module of Picat and the Lingeling solver in 40s.
import sat.

numberlink(NP,NR,NC,InputM) =>
 M = new_array(NP,NR,NC),
 M :: 0..1,
 % no two numbers occupy the same square
 foreach(J in 1..NR, K in 1..NC)
 sum([M[I,J,K] : I in 1..NP]) #=1
 end,
 % connectivity constraints
 foreach(I in 1..NP, J in 1..NR, K in 1..NC)
 Neibs = [M[I,J1,K1] : (J1,K1) in [(J-1,K),(J+1,K),(J,K-1),(J,K+1)],
 J1>=1, K1>=1, J1=<NR, K1=<NC],
 (InputM[J,K]==I ->
 M[I,J,K] #=1, sum(Neibs) #= 1
 ;
 M[I,J,K] #=> sum(Neibs) #= 2
)
 end,
solve(M).
Tutorial outline

Introduction to Picat
 – Picat’s programming constructs
 – Logic programming
 – Functional programming
 – Dynamic programming

Combinatorial (optimization) problems in Picat
 – A very short introduction to SAT, CP, MIP modules
 – Sudoku
 – Golomb ruler
 – Multi-agent path finding

Wrap up
Part I:

INTRODUCTION TO PICAT
What is Picat?

Why the name “PICAT”?
- Pattern-matching, Intuitive, Constraints, Actors, Tabling

Core logic programming concepts:
- logic variables (arrays and maps are terms)
- implicit pattern-matching and explicit unification
- explicit non-determinism

Language constructs for scripting and modeling:
- functions, loops, list and array comprehensions, and assignments

Facilities for combinatorial search:
- tabling for dynamic programming
- the \(cp, sat, \) and \(mip \) modules for CSPs
- the planner module for planning
Picat’s Data Types

Diagram:
- **term**
 - **atomic**
 - **var**
 - **attr_var**
 - **dvar**
 - **atom**
 - **char**
 - **number**
 - **integer**
 - **real**
 - **list**
 - **string**
 - **compound**
 - **struct**
 - **array**
 - **map**
 - **set**
A variable name begins with a capital letter or the underscore.

Picat> var(X)
yes

Picat> X = a, var(X)
no

Picat> X.put_attr(a,1), attr_var(X)
yes

Picat> X.put_attr(a,1), Val = X.get_attr(a)
Val = 1
yes

Picat> import cp
Picat> X :: 1..10, dvar(X)
X = DV_010b48_1..10
yes
An unquoted atom name begins with a lower-case letter.
A character is a single-letter atom.

Picat> atom(abc)
yes

Picat> atom('_abc')
yes

Picat> char(a)
yes

Picat> Code = ord(a)
Code = 97

Picat> A = chr(97)
A = a
Picat> int(123)
yes

Picat> Big = 99999999999999999999999
Big = 99999999999999999999999

Picat> X = 0b111101
X = 61

Picat> X = 0xff0
X = 4080

Picat> real(1.23)
yes

Picat> X = 1.23e10
X = 12300000000.0
Lists are singly-linked lists.

Picat> L = [a,b,c], list(L)
L = [a,b,c]
yes

Picat> L = new_list(3)
L = [_101c8,_101d8,_101e8]

Picat> L = 1..2..10
L = [1,3,5,7,9]

Picat> L = [X : X in 1..10, even(X)]
L = [2,4,6,8,10]

Picat> L = [a,b,c], Len = len(L)
L = [a,b,c]
Len = 3

Picat> L = [a,b] ++ [c,d]
L = [a,b,c,d]
Strings are lists of characters.

Picat> S = "hello"
S = [h,e,l,l,o]

Picat> S = "hello" ++ "Picat"
S = [h,e,l,l,o,'P',i,c,a,t]

Picat> S = to_string(abc)
S = [a,b,c]

Picat> S = to_radix_string(123,16)
S = ['7','B']

Picat> X = to_int("123")
X = 123

Picat> X = parse_term("[1,2,3]")
X = [1,2,3]
Picat> S = $student(mary,cs,3.8)
S = student(mary,cs,3.8)

Picat> S = new_struct(mary,3)
S = mary(_12ad0,_12ad8,_12ae0)

Picat> S = $f(a), A = arity(S), N = name(S)
A = 1
N = f

Picat> And = (a,b)
And = (a,b)

Picat> Or = (a;b)
Or = (a;b)

Picat> Constr = (X #= Y)
Constr = (_10f18 #= _10f20)
Arrays

Picat> A = {a,b,c}, array(A)
A = {a,b,c}
yes

Picat> A = new_array(3)
A = {_10528,_10530,_10538}

Picat> A = new_array(3,3)
A = {{_fdb0,_fdb8,_fdc0},…}

Picat> A = {X : X in 1..10, even(X)}
A = {2,4,6,8,10}

Picat> L = [a,b,c], A = to_array(L)
L = [a,b,c]
A = {a,b,c}

Picat> A = {a,b} ++ {c,d}
A = {a,b,c,d}
Maps and sets are hash tables.

```picat
Picat> M = new_map([ichi=1, ni=2]), map(M)
M = (map)[ni = 2,ichi = 1]
yes

Picat> M = new_map([ni=2]), Ni = M.get(ni)
Ni = 2

Picat> M = new_map(), M.put(ni,2)
M = (map)[ni = 2]

Picat> M = new_map(), Ni = M.get(ni,unknown)
M = (map)[]
Ni = unknown

Picat> S = new_set([a,b,c])
S = (map)[c,b,a]

Picat> S = new_set([a,b,c]), S.has_key(b)
yes
```
Index Notation

$X[i_1,\ldots,i_n] : X$ references a compound value

Linear-time access of list elements.

Picat> L = [a,b,c,d], X = L[4]
X = d

Constant-time access of structure and array elements.

Picat> S = $student(mary,cs,3.8), GPA = S[3]
GPA = 3.8

Picat> A = {{1, 2, 3}, {4, 5, 6}}, B = A[2, 3]
B = 6
[T : E₁ in D₁, Condₙ, ..., Eₙ in Dₙ, Condₙ]

Picat> L = [X : X in 1..10, even(X)]
L = [2, 4, 6, 8, 10]

Picat> L = [(A,I) : A in [a,b], I in 1..2].
L = [(a,1), (a,2), (b,1), (b,2)]

Picat> L = [(A,I) : {A,I} in zip([a,b],1..2)]
L = [(a,1), (b,2)]

Picat> L = [X : I in 1..5] % X is local
L = [_bee8, _bef0, _bef8, _bf00, _bf08]

Picat> X = _, L = [X : I in 1..5] % X is non-local
L = [X, X, X, X, X]
Picat> Y = 13.to_binary_string()
Y = ['1', '1', '0', '1']

Picat> Y = 13.to_binary_string().reverse()
Y = ['1', '0', '1', '1']

% X becomes an attributed variable
Picat> X.put_attr(age, 35), X.put_attr(weight, 205), A = X.get_attr(age)
A = 35

% X is a map
Picat> X = new_map([age=35, weight=205]), X.put(gender, male)
X = (map)({age=35, weight=205, gender=male})

Picat> S = $point(1.0, 2.0), Name = S.name, Arity = S.len
Name = point
Arity = 2

Picat> Pi = math.pi % module qualifier
Pi = 3.14159
The `foreach` Loop

```
foreach(E₁ in D₁, Cond₁,..., Eₙ in Dₙ, Condₙ)
    Goal
end
```

Variables that occur within a loop but not before in its outer scope are local to each iteration.

```
Picat> A = new_array(5), foreach(I in 1..5) A[I] = X end
A = {₁₅bd0,₁₅bd8,₁₅be0,₁₅be8,₁₅bf0}

Picat> X = _, A = new_array(5), foreach(I in 1..5) A[I] = X end
A = {X,X,X,X,X,X}
```
• Pattern-matching rules
 – No laziness or freeze
 The call \texttt{membchk(X, _)} fails
 – Facilitates indexing
• Explicit unification
• Explicit non-determinism

\begin{verbatim}
member(X,L) ?=> L = [X|_].
member(X,L) => L = [_|LR], member(X,LR).

membchk(X,[X|_]) => true.
membchk(X,[_|L]) => membchk(X,L).
\end{verbatim}
Head = \texttt{Exp}, \texttt{Cond} \Rightarrow \texttt{Body}.

\begin{align*}
\text{fib}(0) &= 1. \\
\text{fib}(1) &= 1. \\
\text{fib}(N) &= \text{fib}(N-1) + \text{fib}(N-2).
\end{align*}

\begin{align*}
\text{power_set}([[]]) &= [[]]. \\
\text{power_set}([H|T]) &= P1 + P2 \Rightarrow \\
& \quad P1 = \text{power_set}(T), \\
& \quad P2 = [[H|S] : S \in P1].
\end{align*}

\begin{align*}
\text{qsort}([[]]) &= []. \\
\text{qsort}([H|T]) &= \text{qsort}([E : E \in T, E<\text{H}]) + \\
& \quad [\text{H}] + \\
& \quad \text{qsort}([E : E \in T, E>\text{H}]).
\end{align*}
Function calls cannot occur in head patterns. Index notations, ranges, dot notations, and comprehensions cannot occur in head patterns.

As-patterns:

\[
\begin{align*}
\text{merge}([], \text{Ys}) &= \text{Ys}. \\
\text{merge}({\text{Xs}}, []) &= \text{Xs}. \\
\text{merge}([\text{X}|\text{Xs}], \text{Ys}@[\text{Y}|_]) &= [\text{X}|\text{Zs}], \ X<Y \Rightarrow \\
&\quad \text{Zs} = \text{merge}(\text{Xs}, \text{Ys}). \\
\text{merge}({\text{Xs}}, [\text{Y}|\text{Ys}]) &= [\text{Y}|\text{Zs}] \Rightarrow \\
&\quad \text{Zs} = \text{merge}(\text{Xs}, \text{Ys}).
\end{align*}
\]
main =>
 print("enter an integer:"),
 N = read_int(),
 foreach(I in 0..N)
 Num := 1,
 printf("%*s", N-I, "") \ % print N-I spaces
 printf("%d ", Num),
 Num := Num*(I-K) div (K+1)
 end,
 nl
end.

$ picat pascal
enter an integer:5
 1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1

SSA (Static Single Assignment)
Loops
Dynamic Programming in Picat

\begin{verbatim}
\textcolor{red}{table}
\textcolor{red}{\texttt{fib(0) = 0.}}
\textcolor{red}{\texttt{fib(1) = 1.}}
\textcolor{red}{\texttt{fib(N) = fib(N-1)+fib(N-2).}}
\end{verbatim}

- Linear tabling
- Mode-directed tabling
- Term sharing
\[
\binom{n}{0} = \binom{n}{n} = 1 \quad \text{for all integers } n \geq 0,
\]

\[
\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \quad \text{for all integers } n, k : 1 \leq k \leq n - 1,
\]

```picat
table
  c(_, 0) = 1.
  c(N, N) = 1.
  c(N, K) = c(N-1, K-1) + c(N-1, K).
```
• Tabled parser

% E -> E + T | E - T | T
table
ex(Si, So) ?=>
ex(Si, S1),
S1 = ['+'|S2],
term(S2, So).
ex(Si, So) ?=>
ex(Si, S1),
S1 = ['-'|S2],
term(S2, So).
ex(Si, So) =>
term(Si, So).

• Non-tabled parser

% E -> T E'
ex(Si, So) =>
term(Si, S1),
ex_prime(S1, So).

% E' -> + T E' | - T E' | ε
ex_prime(['+'|Si], So) =>
term(Si, S1),
ex_prime(S1, So).
ex_prime(['-'|Si], So) =>
term(Si, S1),
ex_prime(S1, So).
ex_prime(Si, So) => So = Si.

Dynamic Programming: Path-finding

table (+,-,min)
path(S,Path,Cost),final(S) =>
 Path=[],Cost=0.
path(S,Path,Cost) =>
 action(S,S1,Action,ActionCost),
 path(S1,Path1,Cost1),
 Path = [Action|Path1],
 Cost = Cost1+ActionCost.
import planner.

go =>
 S0=[s,s,s,s],
 best_plan(S0,Plan),
 writeln(Plan).

final([n,n,n,n]) => true.

action([F,F,G,C],S1,Action,Cost) ?=>
 Action=farmer_wolf,
 Cost = 1,
 opposite(F,F1),
 S1=[F1,F1,G,C],
 not unsafe(S1).

• Based on tabling
• Allows use of structures to represent states
• Supports domain knowledge and heuristics
• Provides search predicates
 – Depth-unbounded & depth-bounded
 – IDA & branch-and-bound
Part II.

COMBINATORIAL (OPTIMIZATION) PROBLEMS IN PICAT
import cp. import sat. import mip.

Constraints:

Domain

\[X :: \text{Domain}, X \text{ notin Domain} \]

Arithmetic

\[(X \#= Y), (X \#!= Y), (X \#> Y), (X \#>= Y), \ldots \]

Boolean

\[(X \#\slash\ Y), (X \#\slash/ Y), (X \#<= Y), (X \#>= Y), (X \#^ Y), (#~ X) \]

Table

\[\text{table_in(VarTuple,Tuples), table_notin(VarTuple,Tuples)} \]

Global

\[\text{all_different(L), element(I,L,V), circuit(L), cumulative(...), \ldots} \]

Solver invocation:

\[\text{solve(Options,Vars)} \]
import cp.

send_more_money =>
 Vars = [S,E,N,D,M,O,R,Y],
 Vars :: 0..9,
 all_different(Vars),
 S #!= 0,
 M #!= 0,
 1000*S+100*E+10*N+D
 +1000*M+100*O+10*R+E
 #= 10000*M+1000*O+100*N+10*E+Y,
 solve(Vars), % label variables
 writeln(Vars).

common interface to CP, SAT, and MIP
Combinatorial puzzle, whose goal is to enter digits 1-9 in cells of 9×9 table in such a way, that no digit appears twice or more in every row, column, and 3×3 sub-grid.

Solving Sudoku

Use information that each digit appears exactly once in each row, column and sub-grid.
We can see every cell as a variable with possible values from domain \{1,\ldots,9\}.

There is a binary inequality constraint between all pairs of variables in every row, column, and sub-grid.

Such formulation of the problem is called a constraint satisfaction problem.
import cp.

sudoku(Board) =>
 N = Board.length,
 N1 = ceiling(sqrt(N)),
 Board :: 1..N,
 foreach(R in 1..N)
 all_different([Board[R,C] : C in 1..N])
 end,
 foreach(C in 1..N)
 all_different([Board[R,C] : R in 1..N])
 end,
 foreach(R in 1..N1..N, C in 1..N1..N)
 all_different([Board[R+I,C+J] : I in 0..N1-1, J in 0..N1-1])
 end,
solve(Board).

board(Board) =>
 Board = {{_, 6, _, 1, _, 4, _, 5, _},
 {_, _, 8, 3, _, 5, 6, _, _},
 {2, _, _, _, _, _, _, _, 1},
 {8, _, _, 4, _, 7, _, _, 6},
 {_, _, 6, _, _, _, 3, _, _},
 {7, _, _, 9, _, 1, _, _, 4},
 {5, _, _, _, _, _, 2},
 {_, _, 7, 2, _, 6, 9, _, _},
 {_, 4, _, 5, _, 8, _, 7, _}}.
A ruler with M marks such that distances between any two marks are different.

The shortest ruler is the optimal ruler.

Hard for $M \geq 16$, no exact algorithm for $M \geq 24$!

Applied in radioastronomy.

Solomon W. Golomb
Professor
University of Southern California
http://csi.usc.edu/faculty/golomb.html
distributed.net vyřešili optimálně problémy 24-27 pomocí masivního paralelismu

Roman Barták, 10/15/2016
A base model:

Variables X_1, \ldots, X_M with the domain $0..M*M$

$X_1 = 0$ \hspace{1cm} \textit{ruler start}$

$X_1 < X_2 < \ldots < X_M$ \hspace{1cm} \textit{no permutations of variables}$

$\forall i<j D_{i,j} = X_j - X_i$ \hspace{1cm} \textit{difference variables}$

\texttt{all_different}({D_{1,2,} D_{1,3,} \ldots D_{1,M,} D_{2,3,} \ldots D_{M-1,M}})$

Model extensions:

$D_{1,2} < D_{M-1,M}$ \hspace{1cm} \textit{symmetry breaking}$

better bounds (\textit{implied constraints}) for $D_{i,j}$

$D_{i,j} = D_{i,i+1} + D_{i+1,i+2} + \ldots + D_{j-1,j}$

so $D_{i,j} \geq \sum_{j-i} = (j-i)*(j-i+1)/2$ \hspace{1cm} \textit{lower bound}$

$X_M = X_M - X_1 = D_{1,M} = D_{1,2} + D_{2,3} + \ldots D_{i-1,i} + D_{i,j} + D_{j,j+1} + \ldots + D_{M-1,M}$

$D_{i,j} = X_M - (D_{1,2} + \ldots D_{i-1,i} + D_{j,j+1} + \ldots + D_{M-1,M})$

so $D_{i,j} \leq X_M - (M-1-j+i)*(M-j+i)/2$ \hspace{1cm} \textit{upper bound}
import cp.

golomb(M,X) =>
 X = new_list(M),
 X :: 0..(M*M), % domains for marks
 X[1] = 0,

 foreach(I in 1..(M-1))
 X[I] #< X[I+1] % no permutations
 end,

 D = new_array(M,M), % distances
 foreach(I in 1..(M-1), J in (I+1)..M)
 D[I,J] #= X[J] - X[I],
 D[I,J] #>= (J-I)*(J-I+1)/2, % bounds
 D[I,J] #=< X[M] - (M-1-J+I)*(M-J+I)/2
 end,

 D[1,2] #< D[M-1,M], % symmetry breaking

 all_different([D[I,J] : I in 1..(M-1),
 J in (I+1)..M]),

 solve($[min(X[M])],X).
What is the effect of different constraint models?

<table>
<thead>
<tr>
<th>size</th>
<th>base model</th>
<th>base model + symmetry</th>
<th>base model + symmetry + implied constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>12</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>94</td>
<td>44</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>860</td>
<td>353</td>
<td>143</td>
</tr>
<tr>
<td>10</td>
<td>7494</td>
<td>3212</td>
<td>1091</td>
</tr>
<tr>
<td>11</td>
<td>147748</td>
<td>57573</td>
<td>23851</td>
</tr>
</tbody>
</table>

Time in milliseconds on 1.7 GHz Intel Core i7, Picat 1.9#6

What is the effect of different search strategies?

<table>
<thead>
<tr>
<th>size</th>
<th>fail first</th>
<th>leftmost first</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>enum</td>
<td>split</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>67</td>
<td>68</td>
</tr>
<tr>
<td>9</td>
<td>537</td>
<td>537</td>
</tr>
<tr>
<td>10</td>
<td>4834</td>
<td>4721</td>
</tr>
<tr>
<td>11</td>
<td>134071</td>
<td>132046</td>
</tr>
</tbody>
</table>

Time in milliseconds on 1.7 GHz Intel Core i7, Picat 1.9#6
Multi-agent path finding (MAPF)

Setting:

- a **graph** (directed or undirected)
- a set of **agents**, each agent is assigned to two locations (nodes) in the graph (start, destination)

MAPF problem:

Find a **collision-free** plan (path) for each agent.
In MAPF, we do not know the lengths of plans (due to possible re-visits of nodes)!

We can encode plans of a known length using a **layered graph** (temporally extended graph).

Each layer corresponds to one time slice and indicates positions of agents at that time.
Using **layered graph** describing agent positions at each time step

\[B_{tav} : \text{agent } a \text{ occupies vertex } v \text{ at time } t \]

Constraints:

- each agent occupies exactly one vertex at each time.
 \[\sum_{v=1}^{n} B_{tav} = 1 \text{ for } t = 0, \ldots, m, \text{ and } a = 1, \ldots, k. \]

- no two agents occupy the same vertex at any time.
 \[\sum_{a=1}^{k} B_{tav} \leq 1 \text{ for } t = 0, \ldots, m, \text{ and } v = 1, \ldots, n. \]

- if agent \(a \) occupies vertex \(v \) at time \(t \), then \(a \) occupies a neighboring vertex or stay at \(v \) at time \(t + 1 \).
 \[B_{tav} = 1 \Rightarrow \sum_{u \in \text{neibs}(v)} (B_{(t+1)au}) \geq 1 \]

Preprocessing:

\(B_{tav} = 0 \) if agent \(a \) cannot reach vertex \(v \) at time \(t \) or \(a \) cannot reach the destination being at \(v \) at time \(t \)
Incremental generation of layers

Setting the initial and destination locations

Agent occupies one vertex at any time

No conflict between agents

Agent moves to a neighboring vertex

L-robustness
If any agent is delayed then trains may cause collisions during execution.

To prevent such collisions we may introduce more space between agents.
<table>
<thead>
<tr>
<th>Instance</th>
<th>Makespan</th>
<th>Sum of costs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Picat</td>
<td>MDD</td>
</tr>
<tr>
<td>g16_p10_a05</td>
<td>0.27</td>
<td>0.02</td>
</tr>
<tr>
<td>g16_p10_a10</td>
<td>1.37</td>
<td>0.14</td>
</tr>
<tr>
<td>g16_p10_a20</td>
<td>2.76</td>
<td>0.76</td>
</tr>
<tr>
<td>g16_p10_a30</td>
<td>3.11</td>
<td>0.79</td>
</tr>
<tr>
<td>g16_p10_a40</td>
<td>8.25</td>
<td>4.71</td>
</tr>
<tr>
<td>g16_p20_a05</td>
<td>1.01</td>
<td>0.16</td>
</tr>
<tr>
<td>g16_p20_a10</td>
<td>1.5</td>
<td>0.31</td>
</tr>
<tr>
<td>g16_p20_a20</td>
<td>2.12</td>
<td>0.46</td>
</tr>
<tr>
<td>g16_p20_a30</td>
<td>4.37</td>
<td>1.45</td>
</tr>
<tr>
<td>g16_p20_a40</td>
<td>3.48</td>
<td>1.15</td>
</tr>
<tr>
<td>g32_p10_a05</td>
<td>1.98</td>
<td>0.53</td>
</tr>
<tr>
<td>g32_p10_a10</td>
<td>3.08</td>
<td>1.21</td>
</tr>
<tr>
<td>g32_p10_a20</td>
<td>8.71</td>
<td>6.8</td>
</tr>
<tr>
<td>g32_p10_a30</td>
<td>34.48</td>
<td>40.13</td>
</tr>
<tr>
<td>g32_p10_a40</td>
<td>34.95</td>
<td>24.87</td>
</tr>
<tr>
<td>g32_p20_a05</td>
<td>5.75</td>
<td>2.77</td>
</tr>
<tr>
<td>g32_p20_a10</td>
<td>2.97</td>
<td>1.11</td>
</tr>
<tr>
<td>g32_p20_a20</td>
<td>16.93</td>
<td>13.73</td>
</tr>
<tr>
<td>g32_p20_a30</td>
<td>12.98</td>
<td>4.54</td>
</tr>
<tr>
<td>g32_p20_a40</td>
<td>16.51</td>
<td>8.17</td>
</tr>
<tr>
<td>Total solved</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
WRAP UP
Picat is a logic-based multi-paradigm language that integrates logic programming, functional programming, constraint programming, and scripting.

- logic variables, unification, backtracking, pattern-matching rules, functions, list/array comprehensions, loops, assignments
- tabling for dynamic programming and planning
- **constraint solving** with CP (constraint programming), SAT (satisfiability), and MIP (mixed integer programming).
I enjoy programming in Picat because it suits my mindset very well. -- Hakan Kjellerstrand

Thank you for your beautiful project! Using Picat, I felt "at home" almost right away. -- Stefan Kral

The Picat language is really cool: it's a very usable mix of logic, functional, constraint, and imperative programming. Scripts can be made quite short but also easily readable. And the built-in tabling is really cool for speeding up recursive programs. I think Picat is like a perfect Swiss army knife that you can do anything with. -- Lorenz Schuffmann

In some cases the use of Picat simplifies the implementation compared to conventional imperative programming languages, while in others it allows to directly convert the problem statement into an efficiently solvable declarative problem specification without inventing an imperative algorithm. -- Sergii Dymchenko
Picat book

Constraint Solving and Planning with Picat
Modeling and Solving AI Problems in Picat

Roman Bartáčk, Neng-Fa Zhou