
1

Modeling and Solving Planning
Problems With Picat

Neng-Fa Zhou
(CUNY Brooklyn College & GC)

Planning with Picat, N.F. Zhou

Classical Planning

 P = (S,,f,,s0,F)
 S : A set of states (finite or countably infinite)
  : A set of actions
 f : A transition function or relation (S  S)
  : A cost function (S  )
 s0 : An initial state
 F : A set of goal states

Planning with Picat, N.F. Zhou 2

Planning Formalisms

 Logic programming
 PLANNER [Hewitt69], “a language for proving theorems

and manipulating models in a robot”
 Prolog for planning [Kowalski79,Warplan76]
 ASP-based planners [Lifschitz02]

 STRIPS-based PDDL
 The de facto language [McDermott98]
 Many solvers (Arvand, LAMA, FD, SymBA*-2,…)
 Extensions of PDDL (e.g., HTN)

 Planning as SAT and model checking
3Planning with Picat, N.F. Zhou

Planning With Picat

 A logic programming approach
 Unlike PDDL and ASP, structured data can be used.
 Domain-specific heuristics and control knowledge about

determinism, dependency, and symmetry can be encoded.

 Tabled backtracking search
 Every state generated during search is tabled.

 Same idea as state-marking used in IDA* and other algorithms.

 Term sharing: common ground terms are tabled only once.
 Alleviate the state explosion problem.

 Resource-bounded search
 Unlike IDA*, results from previous rounds are reused.

Planning with Picat, N.F. Zhou 4

Picat’s planner Module
 Resource-bounded search

 plan(State,Limit,Plan,PlanCost)
 best_plan(State,Limit,Plan,PlanCost)

 Iterative deepening (unlike IDA*, results from early rounds are reused)

 Depth-unbounded search
 plan_unbounded(State,Limit,Plan,PlanCost)
 best_plan_unbounded(State,Limit,Plan,PlanCost)

 Like Dijkstra’s algorithm

5Planning with Picat, N.F. Zhou

How to Use the Planner?
 Import the planner module
 Specify the goal states

 final(State)
 True if State is a goal state.

 Specify the actions
 action(State,NextState,Action,ActionCost)

 Encodes the state transition relation
 States are tabled, and destructive updates of states (using :=) are banned.

 Define a heuristic function if necessary
 heuristic(State) = H => …

 Call a built-in on an initial state to find a plan
Planning with Picat, N.F. Zhou 6

Ex: The Farmer’s Problem

7

import planner.

go =>
S0=[s,s,s,s],
best_plan(S0,Plan),
writeln(Plan).

final([n,n,n,n]) => true.

action([F,F,G,C],S1,Action,ActionCost) ?=>
Action = farmer_wolf,
ActionCost = 1,
opposite(F,F1),
S1 = [F1,F1,G,C],
not unsafe(S1).

…

Planning with Picat, N.F. Zhou

Modeling Techniques

 Find a good representation for states
 Keep the information minimal.
 Use good data structures that facilitate

 sharing
 computation of heuristics
 symmetry breaking

 Use heuristics and domain knowledge
 A state should not be expanded if the travel from it to the

final state costs more than the limit .
 Identify deterministic actions and macro actions.
 Use landmarks.

8Planning with Picat, N.F. Zhou

Modeling Examples
picat-lang.org/projects.html

9

15-puzzle RushHour

Logistics

Ricochet Robots

Rubik’s Cube Tower-of-Hanoi

Planning with Picat, N.F. Zhou

Gilbreath’s card trick

Sokoban

15-Puzzle

 State representation

main =>
Init = [(1,2),(2,2),(4,4),(1,3),(1,1),(3,2),(1,4),(2,4),

(4,2),(3,1),(3,3),(2,3),(2,1),(4,1),(4,3),(3,4)],
best_plan(Init,Plan).

Initial state Goal state

final(S) => S = [(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),
(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)].

Planning with Picat, N.F. Zhou 10

15-Puzzle: Actions
action([P0@(R0,C0)|Tiles],NextS,Action,Cost) =>

Cost = 1,
(R1 = R0-1, R1 >= 1, C1 = C0, Action = up;
R1 = R0+1, R1 =< 4, C1 = C0, Action = down;
R1 = R0, C1 = C0-1, C1 >= 1, Action = left;
R1 = R0, C1 = C0+1, C1 =< 4, Action = right),

P1 = (R1,C1),
slide(P0,P1,Tiles,NTiles),
NextS = [P1|NTiles].

% slide the tile at P1 to the empty square at P0
slide(P0,P1,[P1|Tiles],NTiles) =>

NTiles = [P0|Tiles].
slide(P0,P1,[Tile|Tiles],NTiles) =>

NTiles=[Tile|NTilesR],
slide(P0,P1,Tiles,NTilesR).

Planning with Picat, N.F. Zhou 11

15-Puzzle: Heuristics and
Performance

heuristic([_|Tiles]) = Dist =>
final([_|FTiles]),
Dist = sum([abs(R-FR)+abs(C-FC) :

{(R,C),(FR,FC)} in zip(Tiles,FTiles)]).

Planning with Picat, N.F. Zhou 12

Rush Hour Puzzle

Planning with Picat, N.F. Zhou 13

Move the red car to the exit (4,2).

Rush Hour Puzzle

 State representation

 L11 -- an ordered list of locations of the spaces.
 Lwh -- an ordered list of locations of the wh cars.
 Symmetries are removed.

 Goal states

Planning with Picat, N.F. Zhou 14

{RedLoc,L11,L12,L21,L13,L31}

final({[4|2],_,_,_,_,_}) => true.

Rush Hour Puzzle

 Actions

Planning with Picat, N.F. Zhou 15

% move the red car
action({LocRed,L11,L12,L21,L13,L31},NewS,Action,Cost) ?=>

Cost=1,
move_car(2,1,LocRed,NLocRed,L11,NL11,Action),
NewS = {NLocRed,NL11,L12,L21,L13,L31}.

% move a 1*2 car
action({LocRed,L11,L12,L21,L13,L31},NewS,Action,Cost) ?=>

Cost=1,
select(Loc,L12,L12R),
move_car(1,2,Loc,NLoc,L11,NL11,Action),
NL12 = L12R.insert_ordered(NLoc),
NewS = {LocRed,NL11,NL12,L21,L13,L31}.

…

Sokoban

16

source: takaken

In the ASP’13 version,
there may be more stones
than goal locations. This makes
reversed solving difficult.

Planning with Picat, N.F. Zhou

Sokoban

 State representation
 {SoLoc,GStLocs,NonGStLocs}

 SoLoc – the location of the man.
 GStLocs – an ordered list of locations of the goal stones.
 NonGStLocs – an ordered list of locations of the non-goal stones.

 Goal states

17

final({_,GStLocs,_}) =>
foreach(Loc in GStLocs)

goal(Loc)
end.

Planning with Picat, N.F. Zhou

Sokoban

 Actions

18

% push a goal stone
action({SoLoc,GStLocs,NonGStLocs},NextState,Action,Cost) ?=>

NextState = {NewSoLoc,NewGStLocs,NonGStLocs},
Action = $move_push(SoLoc,StLoc,StDest,Dir),
Cost = 1,
choose_goal_stone(Dir,SoLoc,NewSoLoc,GStLocs,StLoc,

StDest,GStLocs1,NonGStLocs),
NewGStLocs = insert_ordered(GStLocs1,StDest).

% push a non-goal stone
action({SoLoc,GStLocs,NonGStLocs},NextState,Action,Cost) ?=>

…
% Sokoban moves alone
action({SoLoc,GStLocs,NonGStLocs},NextState,Action,Cost) =>

…

Planning with Picat, N.F. Zhou

Sokoban

 Experimental Results
 30 instances from ASP’13 were used.
 Picat (using plan_unbounded) solved all the 30

instances (on average less than 1s per instance).
 Depth-unbounded search is faster than depth-

bounded search.
 Potassco solved only 14 of the 30 instances.
 Not as competitive as Rolling Stone, a specialized

Sokoban planner.

19Planning with Picat, N.F. Zhou

Ricochet Robots

20

source:Martin Gebser et al.

Planning with Picat, N.F. Zhou

Ricochet Robots

 State representation

 Goal states

21

{[CurLoc|TargetLoc],ORobotLocs}

final({[Loc|Loc],_}) => true.

Planning with Picat, N.F. Zhou

{[(1,1)|(2,5)],[(1,8),(8,1),(8,8)]}

Non-target robots are represented
as an ordered list of locations. This
representation breaks symmetries.

Ricochet Robots

 Actions

Planning with Picat, N.F. Zhou 22

action({[From|To],ORobotLocs},NextState,Action,Cost) ?=>
NextState = {[Stop|To],ORobotLocs},
Action = [From|Stop], Cost = 1,
choose_move_dest(From,ORobotLocs,Stop).

action({FromTo@[From|_],ORobotLocs},NextState,Action,Cost) =>
NextState = {FromTo,ORobotLocs2},
Action = [RFrom|RTo], Cost = 1,
select(RFrom, ORobotLocs,ORobotLocs1),
choose_move_dest(RFrom,[From|ORobotLocs1],RTo),
ORobotLocs2 = insert_ordered(ORobotLocs1,RTo).

Logistics

 IPC domains
 Nomystery
 Airport pickup
 Drivelog
 Elevator planning
 Petrobrass planning
 …

Planning with Picat, N.F. Zhou 23

Nomystery

 There is only one truck involved.
 The truck has a fuel level.
 A number of packages need to be transported

between nodes in a graph.
 The graph is weighted and the weight of an

edge is the fuel cost.

Planning with Picat, N.F. Zhou 24

Nomystery
 State representation

 {TruckLoc,LCGs,WCGs}
 LCGs – an ordered list of destinations of loaded cargoes
 WCGs – an ordered list of source-destination pairs of waiting

cargoes

 Goal states

25

final({_,[],[]}) => true.

Planning with Picat, N.F. Zhou

Nomystery

 Actions

Planning with Picat, N.F. Zhou 26

action({Loc,LCGs,WCGs},NextState,Action,Cost),
select(Loc,LCGs,LCGs1)

=>
Action = $unload(Loc),
Cost = 0,
NextState= {Loc,LCGs1,WCGs}.

action({Loc,LCGs,WCGs},NextState,Action,Cost),
select([Loc|CargoDest],WCGs,WCGs1)

=>
Action = $load(Loc,CargoDest),
Cost = 0,
NextState = {Loc,LCGs1,WCGs1},
LCGs1 = insert_ordered(LCGs,CargoDest).

action({Loc,LCGs,WCGs},NextState,Action,Cost) =>
Action = $drive(Loc,Loc1),
NextState = {Loc1,LCGs,WCGs},
fuelcost(Cost,Loc,Loc1).

 Domain knowledge
 If the truck is at the destination of

a loaded cargo, then unload it
deterministically.

 If the truck is at a location where
there is a cargo that needs to be
delivered, then load it
deterministically.

Nomystery

 Experimental results
 30 instances from ASP’13 were used.
 Picat solved all the 30 instances.

 On average less than 0.1s per instance.

 Potassco solved only 17 of the 30 instances.
 Picat solved all the instances used in IPC’11, including the hardest

instance that was not solved by any of the participating solvers.

Planning with Picat, N.F. Zhou 27

Gilbreath’s Card Trick

Planning with Picat, N.F. Zhou 28

split

reverse deck-1

riffle-shuffle

Each quartet contains a card from each suit

Take from “Unraveling a Card Trick”, by Tony Hoare & Natarajan Shankar

Gilbreath’s Card Trick

 State representation

 Goal states

Planning with Picat, N.F. Zhou 29

init([s,h,c,d,s,h,c,d,s,h,c,d])
splitted(Deck1,Deck2)
shuffled(Cards)

final(shuffled(Cards)) =>
test_quartet(Cards,[c,d,h,s]).

test_quartet([C1,C2,C3,C4|_Cards],Suits),
sort([C1,C2,C3,C4]) !== Suits

=> true.
test_quartet([_,_,_,_|Cards],Suits) =>

test_quartet(Cards,Suits).

Gilbreath’s Card Trick

Planning with Picat, N.F. Zhou 30

action(init(Cards),NewS,Action,ActionCost) =>
NewS = $splitted(Deck1,RDeck2),
Action = split,
ActionCost = 1,
append(Deck1,Deck2,Cards),
Deck1 !== [],
Deck2 !== [],
RDeck2 = Deck2.reverse().

action(splitted(Deck1,Deck2),NewS,Action,ActionCost) =>
NewS = $shuffled(Cards),
Action = shuffle,
ActionCost = 1,
shuffle(Deck1,Deck2,Cards).

 Actions

Rubik’s Cube

Planning with Picat, N.F. Zhou 31

12!212 8! 38 = 43,252,003,274,489,856,000
43 quintillion possible states!

8! 37 = 88,179,840

Rubik’s Cube

 State representation

 The goal state

Planning with Picat, N.F. Zhou 32

pieces(Es,Cs)
Es : A list of positions of edge pieces.

Edge positions: [bd,db,…,ru,ur].
Cs : A list of positions of corner pieces.

Corner positions: [bdl,bld,…,ufr,urf]

final(pieces(Es,Cs)) =>
Es = [bd,bl,br,bu,df,dl,dr,fl,fr,fu,lu,ru],
Cs = [bdl,bdr,blu,bru,dfl,dfr,flu,fru].

Rubik’s Cube

 Expand the goal state into a goal region

Planning with Picat, N.F. Zhou 33

From Richard E. Korf’97

final(S,Plan,Cost) =>
M = get_table_map(),
M.get(S,[]) = (Plan,Cost).

Rubik’s Cube

 Actions

 Some domain knowledge
 Do not turn one face consecutively.
 Do not turn opposite faces consecutively.

Planning with Picat, N.F. Zhou 34

action(S,NewS,Action,Cost) =>
current_resource_plan_cost(Limit,CurPlan,_CurPlanLen),
actions(Actions),
Cost = 1,
member(Action,Actions),
not nogood_action(CurPlan,Action),
transform(Action,S,NewS).

Rubik’s Cube

 Experimental results
 222

 Out-of-memory for table area if no goal region is used.
 When the goal is expanded backward by 5 steps, Picat solves most

instances in seconds.

 333
 Picat can solve only easy instances that require up to 14 steps.
 Hard instances normally require 18 steps (in theory, no more than

20 steps).
 Korf’s pattern database is too big to store in the table area.

Planning with Picat, N.F. Zhou 35

36

Hanoi Tower (4 Pegs)

Two snapshots from the sequence
of the Frame-Stewart algorithm

A B C DA B C D

Planning with Picat, N.F. Zhou

Hanoi Tower (4 Pegs)

 Remove correctly-positioned largest disks

Planning with Picat, N.F. Zhou 37

A B C D A B C D

Hanoi Tower (4 Pegs)

Planning with Picat, N.F. Zhou 38

Set up a landmark

A B C D A B C D

A B C D A B C D

Sub-prob-1

Sub-prob-2

Hanoi Tower (4 Pegs)

 State representation

Planning with Picat, N.F. Zhou 39

{N,CurTower,GoalTower}
CurTower = [CPeg1,CPeg2,CPeg3,CPeg4]
GoalTower = [GPeg1,GPeg2,GPeg3,GPeg4]

Pegi = [D1,D2,…,Dk], D1 > D2 > … > Dk

Hanoi Tower (4 Pegs)

Planning with Picat, N.F. Zhou 40

table (+,-,min)
hanoi4({0,_,_},Plan,Cost) => Plan=[],Cost=0.
% reduce the problem if the largest disk already is on the right peg
hanoi4({N,[[N|CPeg1]|CPegs],[[N|GPeg1]|GPegs]},Plan,Cost) =>

NewS = {N-1,[CPeg1|CPegs],[GPeg1|GPegs]},
hanoi4(NewS,Plan,Cost).

…
hanoi4({1,CT,GT},Plan,Cost) =>

nth(From,CT,[_]),
nth(To,GT,[_]),
Plan = [$move(From,To)],
Cost = 1.

% divide the problem into sub-problems
hanoi4({N,CState,GState},Plan,Cost) =>

partition_disks(N,CState,GState,ItState,M,Peg), % set up a landmark
remove_larger_disks(CState,M) = CState1,
hanoi4({M,CState1,ItState},Plan1,Cost1), % sub-problem1
remove_smaller_or_equal_disks(CState,M) = CState2,
remove_smaller_or_equal_disks(GState,M) = GState2,
N1 is N-M,
hanoi3({N1,CState2,GState2,Peg},Plan2,Cost2), % sub-problem2, 3-peg version
remove_larger_disks(GState,M) = GState1,
hanoi4({M,ItState,GState1},Plan3,Cost3), % sub-problem3
Plan = Plan1 ++ Plan2 ++ Plan3,
Cost = Cost1 + Cost2 + Cost3.

Hanoi Tower (4 Pegs)

 Experimental results
 15 instances from ASP’11 were used
 Picat solved all

 In less than 0.1s when no partition heuristic was used.
 Is even faster if a partition heuristic was used.

 Clasp also solved all 15 instances
 On average 20s per instance

Planning with Picat, N.F. Zhou 41

Summary
Modeling Techniques

 Use an ordered list to represent positions
 Rush Hour, Sokoban, Ricochet Robots, and Nomystery.
 Breaks symmetry and facilitates sharing

 Use heuristics (15-puzzle and Ricochet)
 Identify deterministic actions (Nomystery)
 Goal expansion (Rubik’s cube)
 Use landmarks (4-peg Hanoi Tower)

Planning with Picat, N.F. Zhou 42

