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Classical Planning

 P = (S,,f,,s0,F)
 S : A set of states (finite or countably infinite)
  : A set of actions
 f : A transition function or relation (S  S)
  : A cost function (S  )
 s0 : An initial state
 F : A set of goal states
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Planning Formalisms

 Logic programming
 PLANNER [Hewitt69], “a language for proving theorems 

and manipulating models in a robot”
 Prolog for planning [Kowalski79,Warplan76]
 ASP-based planners [Lifschitz02]

 STRIPS-based PDDL
 The de facto language [McDermott98]
 Many solvers (Arvand, LAMA, FD, SymBA*-2,…)
 Extensions of PDDL (e.g., HTN)

 Planning as SAT and model checking
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Planning With Picat

 A logic programming approach
 Unlike PDDL and ASP, structured data can be used.
 Domain-specific heuristics and control knowledge about 

determinism, dependency, and symmetry can be encoded. 

 Tabled backtracking search
 Every state generated during search is tabled.

 Same idea as state-marking used in IDA* and other algorithms.

 Term sharing: common ground terms are tabled only once.
 Alleviate the state explosion problem.

 Resource-bounded search 
 Unlike IDA*, results from previous rounds are reused.
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Picat’s planner Module
 Resource-bounded search

 plan(State,Limit,Plan,PlanCost)
 best_plan(State,Limit,Plan,PlanCost)

 Iterative deepening (unlike IDA*, results from early rounds are reused)

 Depth-unbounded search
 plan_unbounded(State,Limit,Plan,PlanCost)
 best_plan_unbounded(State,Limit,Plan,PlanCost)

 Like Dijkstra’s algorithm
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How to Use the Planner?
 Import the planner module
 Specify the goal states

 final(State) 
 True if State is a goal state.

 Specify the actions
 action(State,NextState,Action,ActionCost) 

 Encodes the state transition relation
 States are tabled, and destructive updates of states (using :=) are banned.

 Define a heuristic function if necessary
 heuristic(State) = H => …

 Call a built-in on an initial state to find a plan
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Ex: The Farmer’s Problem
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import planner.

go =>
S0=[s,s,s,s],
best_plan(S0,Plan),
writeln(Plan).

final([n,n,n,n]) => true.

action([F,F,G,C],S1,Action,ActionCost) ?=>
Action = farmer_wolf,
ActionCost = 1,        
opposite(F,F1),
S1 = [F1,F1,G,C],
not unsafe(S1).

…
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Modeling Techniques

 Find a good representation for states
 Keep the information minimal.
 Use good data structures that facilitate 

 sharing
 computation of heuristics
 symmetry breaking

 Use heuristics and domain knowledge
 A state should not be expanded if the travel from it to the 

final state costs more than the limit .
 Identify deterministic actions and macro actions.
 Use landmarks.
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Modeling Examples
picat-lang.org/projects.html
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15-puzzle RushHour

Logistics

Ricochet Robots

Rubik’s Cube Tower-of-Hanoi
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Gilbreath’s card trick

Sokoban



15-Puzzle

 State representation

main =>
Init = [(1,2),(2,2),(4,4),(1,3),(1,1),(3,2),(1,4),(2,4), 

(4,2),(3,1),(3,3),(2,3),(2,1),(4,1),(4,3),(3,4)],
best_plan(Init,Plan).

Initial state Goal state

final(S) => S = [(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4), 
(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)].
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15-Puzzle: Actions
action([P0@(R0,C0)|Tiles],NextS,Action,Cost) =>

Cost = 1,
(R1 = R0-1, R1 >= 1, C1 = C0, Action = up;
R1 = R0+1, R1 =< 4, C1 = C0, Action = down;
R1 = R0, C1 = C0-1, C1 >= 1, Action = left;
R1 = R0, C1 = C0+1, C1 =< 4, Action = right),

P1 = (R1,C1),
slide(P0,P1,Tiles,NTiles),
NextS = [P1|NTiles].

% slide the tile at P1 to the empty square at P0
slide(P0,P1,[P1|Tiles],NTiles) =>

NTiles = [P0|Tiles].
slide(P0,P1,[Tile|Tiles],NTiles) =>

NTiles=[Tile|NTilesR],
slide(P0,P1,Tiles,NTilesR).
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15-Puzzle: Heuristics and 
Performance

heuristic([_|Tiles]) = Dist =>
final([_|FTiles]),
Dist = sum([abs(R-FR)+abs(C-FC) : 

{(R,C),(FR,FC)} in zip(Tiles,FTiles)]).
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Rush Hour Puzzle
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Move the red car to the exit (4,2).



Rush Hour Puzzle

 State representation

 L11 -- an ordered list of locations of the spaces.
 Lwh -- an ordered list of locations of the wh cars.
 Symmetries are removed.

 Goal states
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{RedLoc,L11,L12,L21,L13,L31}

final({[4|2],_,_,_,_,_}) => true.



Rush Hour Puzzle

 Actions
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% move the red car
action({LocRed,L11,L12,L21,L13,L31},NewS,Action,Cost) ?=>

Cost=1,
move_car(2,1,LocRed,NLocRed,L11,NL11,Action),
NewS = {NLocRed,NL11,L12,L21,L13,L31}.

% move a 1*2 car
action({LocRed,L11,L12,L21,L13,L31},NewS,Action,Cost) ?=>

Cost=1,
select(Loc,L12,L12R),
move_car(1,2,Loc,NLoc,L11,NL11,Action),
NL12 = L12R.insert_ordered(NLoc),
NewS = {LocRed,NL11,NL12,L21,L13,L31}.

…



Sokoban

16

source: takaken

In the ASP’13 version, 
there may be more stones 
than goal locations. This makes 
reversed solving difficult.
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Sokoban

 State representation
 {SoLoc,GStLocs,NonGStLocs}

 SoLoc – the location of the man.
 GStLocs – an ordered list of locations of the goal stones.
 NonGStLocs – an ordered list of locations of the non-goal stones.

 Goal states 
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final({_,GStLocs,_}) =>
foreach(Loc in GStLocs) 

goal(Loc) 
end.
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Sokoban

 Actions
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% push a goal stone 
action({SoLoc,GStLocs,NonGStLocs},NextState,Action,Cost) ?=>

NextState = {NewSoLoc,NewGStLocs,NonGStLocs},
Action = $move_push(SoLoc,StLoc,StDest,Dir),
Cost = 1,
choose_goal_stone(Dir,SoLoc,NewSoLoc,GStLocs,StLoc,

StDest,GStLocs1,NonGStLocs),
NewGStLocs = insert_ordered(GStLocs1,StDest).

% push a non-goal stone
action({SoLoc,GStLocs,NonGStLocs},NextState,Action,Cost) ?=> 

…
% Sokoban moves alone
action({SoLoc,GStLocs,NonGStLocs},NextState,Action,Cost) => 

…
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Sokoban

 Experimental Results
 30 instances from ASP’13 were used.
 Picat (using plan_unbounded) solved all the 30 

instances (on average less than 1s per instance).
 Depth-unbounded search is faster than depth-

bounded search.
 Potassco solved only 14 of the 30 instances.
 Not as competitive as Rolling Stone, a specialized 

Sokoban planner. 
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Ricochet Robots
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source:Martin Gebser et al.
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Ricochet Robots

 State representation

 Goal states
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{[CurLoc|TargetLoc],ORobotLocs}

final({[Loc|Loc],_}) => true.
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{[(1,1)|(2,5)],[(1,8),(8,1),(8,8)]}

Non-target robots are represented 
as an ordered list of locations. This 
representation breaks symmetries.



Ricochet Robots

 Actions
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action({[From|To],ORobotLocs},NextState,Action,Cost) ?=> 
NextState = {[Stop|To],ORobotLocs},
Action = [From|Stop], Cost = 1,
choose_move_dest(From,ORobotLocs,Stop).

action({FromTo@[From|_],ORobotLocs},NextState,Action,Cost) => 
NextState = {FromTo,ORobotLocs2},
Action = [RFrom|RTo], Cost = 1,
select(RFrom, ORobotLocs,ORobotLocs1),
choose_move_dest(RFrom,[From|ORobotLocs1],RTo),
ORobotLocs2 = insert_ordered(ORobotLocs1,RTo).



Logistics

 IPC domains
 Nomystery
 Airport pickup
 Drivelog
 Elevator planning
 Petrobrass planning
 …
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Nomystery

 There is only one truck involved.
 The truck has a fuel level.
 A number of packages need to be transported 

between nodes in a graph.
 The graph is weighted and the weight of an 

edge is the fuel cost.
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Nomystery
 State representation

 {TruckLoc,LCGs,WCGs}
 LCGs – an ordered list of destinations of loaded cargoes
 WCGs – an ordered list of source-destination pairs of waiting 

cargoes

 Goal states
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final({_,[],[]}) => true.
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Nomystery

 Actions
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action({Loc,LCGs,WCGs},NextState,Action,Cost),
select(Loc,LCGs,LCGs1) 

=>
Action = $unload(Loc),
Cost = 0,
NextState= {Loc,LCGs1,WCGs}.

action({Loc,LCGs,WCGs},NextState,Action,Cost),
select([Loc|CargoDest],WCGs,WCGs1)

=>
Action = $load(Loc,CargoDest),
Cost = 0,
NextState = {Loc,LCGs1,WCGs1}, 
LCGs1 = insert_ordered(LCGs,CargoDest).

action({Loc,LCGs,WCGs},NextState,Action,Cost) => 
Action = $drive(Loc,Loc1),
NextState = {Loc1,LCGs,WCGs},
fuelcost(Cost,Loc,Loc1).

 Domain knowledge
 If the truck is at the destination of 

a loaded cargo, then unload it 
deterministically.

 If the truck is at a location where 
there is a cargo that needs to be 
delivered, then load it 
deterministically. 



Nomystery

 Experimental results
 30 instances from ASP’13 were used. 
 Picat solved all the 30 instances.

 On average less than 0.1s per instance.

 Potassco solved only 17 of the 30 instances.
 Picat solved all the instances used in IPC’11, including the hardest 

instance that was not solved by any of the participating solvers.
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Gilbreath’s Card Trick
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split

reverse deck-1

riffle-shuffle

Each quartet contains a card from each suit

Take from “Unraveling a Card Trick”, by Tony Hoare & Natarajan Shankar



Gilbreath’s Card Trick

 State representation

 Goal states
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init([s,h,c,d,s,h,c,d,s,h,c,d])
splitted(Deck1,Deck2)
shuffled(Cards)

final(shuffled(Cards)) =>
test_quartet(Cards,[c,d,h,s]).

test_quartet([C1,C2,C3,C4|_Cards],Suits),
sort([C1,C2,C3,C4]) !== Suits

=> true.
test_quartet([_,_,_,_|Cards],Suits) =>

test_quartet(Cards,Suits).



Gilbreath’s Card Trick
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action(init(Cards),NewS,Action,ActionCost) =>
NewS = $splitted(Deck1,RDeck2),
Action = split,
ActionCost = 1,
append(Deck1,Deck2,Cards),
Deck1 !== [],
Deck2 !== [],
RDeck2 = Deck2.reverse().

action(splitted(Deck1,Deck2),NewS,Action,ActionCost) =>
NewS = $shuffled(Cards),
Action = shuffle,
ActionCost = 1,
shuffle(Deck1,Deck2,Cards).

 Actions



Rubik’s Cube
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12!212 8! 38 = 43,252,003,274,489,856,000
43 quintillion possible states!

8! 37 = 88,179,840



Rubik’s Cube

 State representation

 The goal state
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pieces(Es,Cs)
Es : A list of positions of edge pieces. 

Edge positions: [bd,db,…,ru,ur].
Cs : A list of positions of corner pieces. 

Corner positions:  [bdl,bld,…,ufr,urf]

final(pieces(Es,Cs)) =>
Es = [bd,bl,br,bu,df,dl,dr,fl,fr,fu,lu,ru],
Cs = [bdl,bdr,blu,bru,dfl,dfr,flu,fru].



Rubik’s Cube

 Expand the goal state into a goal region
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From Richard E. Korf’97

final(S,Plan,Cost) =>
M = get_table_map(),
M.get(S,[]) = (Plan,Cost). 



Rubik’s Cube

 Actions

 Some domain knowledge
 Do not turn one face consecutively.
 Do not turn opposite faces consecutively.
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action(S,NewS,Action,Cost) =>   
current_resource_plan_cost(Limit,CurPlan,_CurPlanLen),
actions(Actions),
Cost = 1,
member(Action,Actions),
not nogood_action(CurPlan,Action),    
transform(Action,S,NewS).



Rubik’s Cube

 Experimental results
 222

 Out-of-memory for table area if no goal region is used.
 When the goal is expanded backward by 5 steps, Picat solves most 

instances in seconds.

 333
 Picat can solve only easy instances that require up to 14 steps.
 Hard instances normally require 18 steps (in theory, no more than 

20 steps).
 Korf’s pattern database is too big to store in the table area.
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Hanoi Tower (4 Pegs)

Two snapshots from the sequence 
of the Frame-Stewart algorithm 

A                B                C                DA                  B                 C              D
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Hanoi Tower (4 Pegs)

 Remove correctly-positioned largest disks
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A                B               C              D A                B               C                D



Hanoi Tower (4 Pegs)
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Set up a landmark

A                B               C              D A                B               C              D

A                B               C              D A                B               C              D

Sub-prob-1

Sub-prob-2



Hanoi Tower (4 Pegs)

 State representation
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{N,CurTower,GoalTower}
CurTower = [CPeg1,CPeg2,CPeg3,CPeg4]
GoalTower = [GPeg1,GPeg2,GPeg3,GPeg4]

Pegi = [D1,D2,…,Dk], D1 > D2 > … > Dk



Hanoi Tower (4 Pegs)
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table (+,-,min)
hanoi4({0,_,_},Plan,Cost) => Plan=[],Cost=0.
% reduce the problem if the largest disk already is on the right peg
hanoi4({N,[[N|CPeg1]|CPegs],[[N|GPeg1]|GPegs]},Plan,Cost) =>

NewS = {N-1,[CPeg1|CPegs],[GPeg1|GPegs]},
hanoi4(NewS,Plan,Cost).

…
hanoi4({1,CT,GT},Plan,Cost) => 

nth(From,CT,[_]),
nth(To,GT,[_]),
Plan = [$move(From,To)],
Cost = 1.

% divide the problem into sub-problems
hanoi4({N,CState,GState},Plan,Cost) =>

partition_disks(N,CState,GState,ItState,M,Peg),    % set up a landmark
remove_larger_disks(CState,M) = CState1,
hanoi4({M,CState1,ItState},Plan1,Cost1),    % sub-problem1
remove_smaller_or_equal_disks(CState,M) = CState2,
remove_smaller_or_equal_disks(GState,M) = GState2,
N1 is N-M,
hanoi3({N1,CState2,GState2,Peg},Plan2,Cost2),      % sub-problem2, 3-peg version
remove_larger_disks(GState,M) = GState1,
hanoi4({M,ItState,GState1},Plan3,Cost3),    % sub-problem3
Plan = Plan1 ++ Plan2 ++ Plan3,
Cost = Cost1 + Cost2 + Cost3.



Hanoi Tower (4 Pegs)

 Experimental results
 15 instances from ASP’11 were used
 Picat solved all

 In less than 0.1s when no partition heuristic was used.
 Is even faster if a partition heuristic was used.

 Clasp also solved all 15 instances
 On average 20s per instance 
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Summary  
Modeling Techniques

 Use an ordered list to represent positions
 Rush Hour, Sokoban, Ricochet Robots, and Nomystery.
 Breaks symmetry and facilitates sharing

 Use heuristics (15-puzzle and Ricochet)
 Identify deterministic actions (Nomystery)
 Goal expansion (Rubik’s cube)
 Use landmarks (4-peg Hanoi Tower) 
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