
Converting Deterministic Finite Automata to

Regular Expressions

Christoph Neumann

Mar 16, 2005

Abstract

This paper explores three techniques for converting deterministic fi-
nite automata (DFA) to regular expressions and compares the usefulness
of each technique. The techniques examined are the transitive closure
method, the state removal method, and the Brzozowski algebraic method.

1 Background

Kleene’s seminal article defines regular expressions and their relationship
to finite automata [7]. Kleene proves the equivalence of finite automata
and regular expressions thereby providing us with the first technique, the
transitive closure method, for converting DFAs to regular expressions.
Later Brzozowski expanded on Kleene’s method by introducing the notion
of derivatives of regular expressions [3], but his paper passed into obscurity
until G. Berry and R. Sethi brought Brzozowski’s paper to the forefront
in [2]1. The state removal method appears in [4] but Linz presents a more
straightforward method in [8].

2 Definitions

We will using the Moore model [9] for finite automata. Given an au-
tomaton M with an input alphabet Ak = {0, 1, · · · , k − 1}, M has m
states Ms = {q1, q2, · · · , qm} where qλ is the starting state of M and
Mf = {qf1

, qf2
, · · · , qfn

} are the n final states of M where n ≤ m. For
clarity, we will use letters to represent each value in the alphabet A instead
of using the numeric representation (a = 0, b = 1, etc), and for convenience
we will assume q1 is the starting state unless otherwise noted.

We will use Kleene’s definition [7] of regular expressions. Regular
expressions are defined recursively as:

1. The symbols 0, 1, · · · , k − 1, λ, and φ are regular expressions, where
λ is the empty string and φ is the empty set.

1However, efficiently converting regular expressions to automata is the focus of the G.
Berry and R. Sethi paper, not converting DFAs to regular expressions

1



2. Set Union: Given the regular expressions x and y, the union of x
and y, expressed as x + y, is a regular expression.

3. Concatenation: Given the regular expressions x and y, the con-
catenation (or product) of x and y, expressed as xy is a regular
expression.

4. Iteration: Given the regular expression x, the iteration (or star) of
x, expressed as x∗, is a regular expression.

5. Given a regular expression x, (x) is a regular expression.

6. All regular expressions can be constructed by a finite application of
rules 1-5.

The regular expressions in rule 1 are terminals. The concatenation of
terminals is a string. For a given regular expression x, there is a set X
which contains all the strings represented by x. We will use x and X in-
terchangeably. A single string is simply represented by the set containing
that single string.

We will also refer to and use the following identities:

(ab)c = a(bc) = abc
λx = xλ = x
φx = xφ = φ

φ + x = x
λ + x∗ = x∗

(λ + x)∗ = x∗

Since + is commutative, all the commutative versions apply.

3 Transitive Closure Method

Suppose the given DFA M is to be represented as a regular expression.

q1 q2 q3 q4
b c a

Figure 1: A very simple automaton.

Consider the automaton in figure 1. The input for edge in the au-
tomaton is a regular expression. Quite simply, the regular expression for
the transition from q1 to q2 is b, the transition from q2 to q3 is c and so
on. Furthermore, the regular expression representing the transition from
q1 to q3 is the concatenation of the regular expressions thus forming bc.
Thusly, we can find the regular expression for the automaton to be bca
since that expression is the concatenation of all of the transitions from
the starting state q1 to the final state q4.

More generally, for a path from qλ to qf , the concatenation of the reg-
ular expression for each transition in the path forms a regular expression
that represents the same string as the path from qλ to qf in the automa-
ton. Supposing there exists only one unique path in automaton M from

2



qλ to qf , there exists only one regular expression R such that R represents
the same string as the DFA M . However, this is a trivial automaton, let
us examine how to expand this to a more general case.

q1 q2
b

a b

Figure 2: A more complicated automaton.

Now consider the DFA in figure 2. It is clear that multiple paths exist
from q1 to q2. We cannot derive a simple regular expression to represent
the DFA, however using the other operators (union and iteration) we can
build on our previous approach to create a construction that works for
all types of DFA. We will forgo the proof and leave it to Kleene [7]. The
proof is also demonstrated by Hopcroft and Ullman [5] and explained
quite clearly by Salomaa [10].

Suppose regular expression Rij represents the set of all strings that
transition the automaton M from qi to qj . Furthermore, suppose Rk

ij

represents the set of all strings that transition the automaton M from qi to
qj without passing through any state higher than qk. We can construct Rij

by successively constructing R1

ij , R
2

ij , · · · , Rm
ij . Rk

ij is recursively defined
as:

Rk
ij = Rk−1

ik (Rk−1

kk )∗Rk−1

kj + Rk−1

ij

assuming we have initialized R0

ij to be:

R0

ij =

8

<

:

r if i 6= j and r transitions M from qi to qj

r + λ if i = j and r transitions M from qi to qj

φ otherwise

As we can see, this successive construction builds up regular expres-
sions until we have Rij . We can then construct a regular expression
representing M as the union of all Rλf where qλ is the starting state and
f ∈ Mf (the final states for M).

This technique is similar in nature to the all-pairs shortest path prob-
lem. The only difference being that we are taking the union and con-
catenation of regular expressions instead of summing up distances. This
solution is of the same form as transitive closure and belongs to the con-
stellation of problems associated with closed semirings.

The chief problem of the transitive closure approach is that it creates
very large regular expressions. Examining the formula for an Rk

ij , it is
clear the significant length is due to the repeated union of concatenated
terms. Even by using the previous identities, we still have long expres-
sions.

4 State Removal Method

The state removal approach identifies patterns within the graph and re-
moves states, building up regular expressions along each transition. The

3



advantage of this technique over the transitive closure method is that it
is easier to visualize. This technique is described by Du and Ko [4], but
we examine a much simpler approach is given by Linz [8].

First, any multi-edges are unified into a single edge that contains the
union of inputs. Suppose from q2 to q5 there is an edge a and an edge
b, those would be unified into one edge from q2 to q5 that has the value
a + b.

Now, consider a subgraph of the automaton M which is of the form
given in figure 3. State q may be removed and the automaton may be
reduced to the form in figure 4. The pattern may still be applied if edges
are missing. For an edge that is missing, leave out the corresponding edge
in figure 4.

This process repeats until the automaton is of the form in figure 5.
Then by direct calculation, the regular expression is:

r = r1 ∗ r2(r4 + r3r1 ∗ r2) ∗ .

qi q qj

a b

cd

e

Figure 3: Desired pattern for state removal.

qi qj

ae∗b

ce∗d

ae∗d ce∗d

Figure 4: Results after state removal.

q1 qf

r2

r3

r1 r4

Figure 5: Final form.

4



5 Brzozowski Algebraic Method

Brzozowski method [3]2 takes a unique approach to generating regular
expressions. We create a system of regular expressions with one regular
expression unknown for each state in M , and then we solve the system
for Rλ where Rλ is the regular expression associated with starting state
qλ. These equations are the characteristic equations of M .

Constructing the characteristic equations is straightforward. For each
state qi in M , the equation for Ri is a union of terms. Each term can be
constructed like so: for a transition a from qi to qj , the term is aRj . If
Ri is a final state, λ is also one of the terms. This leads to a system of
equations in the form:

R1 = a1R1 + a2R2 + · · ·
R2 = a1R1 + a2R2 + · · ·
R3 = a1R1 + a2R2 + · · · + λ

... =
...

Rm = a1R1 + a2R2 + · · · + λ

where ax = φ if there is no transition from Ri to Rj .
The system can be solved via straightforward substitution, except

when an unknown appears on both the right and left hand side of the
equation. This situation occurs when there is a self loop for state qi. Ar-
den’s theorem [1] is the key to solving these situations. The theorem is as
follows:

Given an equation of the form X = AX + B where λ /∈ A, the
equation has the solution X = A∗B.

We use this equation to isolate Ri on the left hand size and successively
substitute Ri into the another equation. We repeat the process until we
have found Rλ with no unknowns on the right hand side.

For example, consider again the automaton in figure 2. The charac-
teristic equations are as follows (where Rλ = R1):

R1 = aR1 + bR2

R2 = bR2 + λ

We solve for R2 using Arden’s theorem and the previously mentioned
identities:

R2 = bR2 + λ
= b∗λ
= b∗

We substitute into R1 and solve:

R1 = aR1 + b(b∗)
= aR1 + bb∗
= a∗(bb∗)
= a∗bb∗

Thus, the regular expression for the automaton in figure 2 is a∗bb∗.

2Kain [6] explains this method in more detail and gives illustrative examples.

5



6 Conclusions

The state removal approach seems useful for determining regular expres-
sions via manual inspection, but is not as straightforward to implement as
the transitive closure approach and the algebraic approach. The transitive
closure approach gives a clear and simple implementation, but tends to
create very long regular expressions. The algebraic approach is elegant,
leans toward a recursive approach, and generates reasonably compact reg-
ular expressions. Brzozowski’s method is particularly suited for recursion
oriented languages, such as functional languages, where the transitive clo-
sure approach would be cumbersome to implement.

References

[1] Dean N. Arden. Delayed-logic and finite-state machines. In Theory of

Computing Machine Design, pages 1–35. U. of Michigan Press, Ann
Arbor, MI, 1960.

[2] G. Berry and R. Sethi. From regular expressions to deterministic
automata. TCS: Theoretical Computer Science, 48:117–126, 1987.

[3] Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM,
11(4):481–494, 1964.

[4] Ding-Shu Du and Ker-I Ko. Problem Solving in Automata, Lan-

guages, and Complexity. John Wiley & Sons, New York, NY, 2001.

[5] John E. Hopcroft and Jeffery D. Ullman. Introduction to Automata

Theory, Languages, and Computation. Addison-Wesley Publishing
Company, Reading, MA, 1979.

[6] Richard Y. Kain. Automata Theory: Machines and Languages.
Robert E. Krieger Publishing Company, Malabar, FL, 1981.

[7] S. C. Kleene. Representation of events in nerve nets and finite au-
tomata. In Automata studies, pages 3–40. Ann. of Math. Studies No.
34, Princeton University Press, Princeton, NJ, 1956.

[8] Peter Linz. An introduction to Formal Languages and Automata.
Jones and Bartlett Publishers, Sudbury, MA, third edition, 2001.

[9] E. F. Moore. Gedanken experiments on sequential machines. In
Automata Studies, pages 129–153. Ann. of Math. Studies No. 34,
Princeton University Press, Princeton, NJ, 1956.

[10] Arto Salomaa. Jewels of Formal Language Theory. Computer Science
Press, Rockville, MD, 1984.

6


