
Programming Languages and Compilers
Final Exam

This is an open exam, meaning that you are free to use books, notes, computers, and the
internet. However, any form of collaboration is prohibited. Complete the exam, and email it as
a PLAIN TEXT under the subject ”CISC 7120 Final” to nzhou@brooklyn.cuny.edu by midnight
on Wednesday, December 15.

Question 1 (15 points)

Give a regular expression for each of the following languages over Σ = {0, 1, 2}.

1. All strings that begin with 1 and end with 2.

2. All strings that contain exactly three 1’s. For example, "0101012" is valid.

3. All three-digit decimal integers that are divisible by 3. For example, "0", "102" are valid,
but "100" is not.

1

Question 2 (15 points)

The following DFAs define three languages over Σ = {0, 1}. Describe each of the languages
and give a regular expression for it.

Figure 1: (DFA-1)

Figure 2: (DFA-2)

Figure 3: (DFA-3)

2

Question 3 (20 points)

Consider the following CFG:

E ::= (E + E) | (E * E) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

1. Is the grammar ambiguous? Why?

2. Give a left-most derivation for the expression "(2 * (3 + 4))".

3. Write a function in a programming language of your choice that takes an expression as a
string and returns the evaluated value. For example, for the above expression, it returns
14. If the string is not a valid expression, the function throws an exception.

3

Question 4 (20 points)

Write each of the following functions in Picat or Haskell using recursion. No higher-order
functions or list comprehensions can be used in the implementations.

1. member(x,lst): This function checks if x occurs in lst.

2. sorted list(lst): This function checks if lst is sorted in ascending order.

3. mode(lst): This function returns the most frequently occurring element in lst. For
example, the returned value for lst = [1,3,1,3,2,1] is 1. If there are more than one
most frequent element, then the function can return any one of them.

4

Question 5 (10 points)

Consider the function gen defined below in Picat and Haskell.

%% In Picat

gen(N) = gen(N,[],0,0).

gen(0,Str,Na,Nb) = [Str], Na > Nb => true.

gen(0,Str,Na,Nb) = [].

gen(N,Str,Na,Nb) = Res =>

Res1 = gen(N-1,[a|Str],Na+1,Nb),

Res2 = gen(N-1,[b|Str],Na,Nb+1),

Res = Res1 ++ Res2.

-- Haskell

gen n = gen_aux n [] 0 0

gen_aux 0 str na nb

| na > nb = [str]

| otherwise = []

gen_aux n str na nb = res1 ++ res2

where res1 = gen_aux (n-1) (’a’:str) (na+1) nb

res2 = gen_aux (n-1) (’b’:str) na (nb+1)

1. What is the output of the function call gen(4)?

2. What is the return value for a given value n, in general?

3. (Extra 5 points) The function definition is not tail recursive. Convert it into tail recursion.

5

Question 6 (20 points)

Design a data structure for binary trees and write each of the following functions on binary
trees in Haskell, Java, C++, Picat, or Python:

1. member(x,btree): This function checks if x occurs in btree. The binary tree btree is
not necessarily a binary search tree.

2. one child node values(btree): This function takes a binary tree and returns a list of
values of the nodes in the tree that have exactly one child. The order of the values in the
list is not important.

3. shallowest leaf(btree) (extra 5 points): This function returns the values in a shal-
lowest leaf node in btree. If there are multiple such leaves, then the function returns the
left-most one.

6

