Programming Languages
Final Exam

Name:_________

Answer all *seven* questions.

Question 1

Give a regular expression for each of the following languages over \(\Sigma = \{0,1,\ldots,9\} \).

1. All 5-digit positive integers.
2. All positive integers that begin with 9 and are multiples of 5.
3. All strings that begin with 9 and contain three consecutive 1’s.

Question 2

Prove that the following grammar is ambiguous.

\[E \rightarrow E \text{ or } E \mid E \text{ and } E \mid \text{not } E \mid (E) \mid x \]
Question 3
What is dynamic binding? Give an example in Java or any other OOP language to illustrate it.

Question 4
Implement a class in C++ or Java named MyCollection that extends a collection class such as the vector or the linked list class. This new class overrides the method add in the following way: it does nothing if the object to be added already exists in the collection; otherwise it calls the add method in the super class to add the object into the collection. Use o1.equals(o2) to test if two objects o1 and o2 are equal.
Question 5

Write a function in Python, Haskell, or Picat to remove duplicates from a given list. For example, if the list contains 1, 1, 2, 3 and 2, then the resulting list should contain 1, 2, and 3. The order must be preserved. If possible, implement a $O(n)$ or $O(n \times \log_2(n))$ algorithm, where n is the size of the given list.

Question 6

Assume an integer set is represented as an ordered list of integers without duplicates. Define the following functions on integer sets in Python, Haskell, or Picat.

1. union(S1,S2): the union of S1 and S2.

2. exclusive_or(S1,S2): the “exclusive or” of S1 and S2, i.e., the elements in S1 or S2 but not in both.

3. power(S): The power set of S.
In Picat, a binary tree can be represented as a structure in the form \(t(\text{Value}, \text{Left}, \text{Right}) \), where \(\text{Left} \) is the left subtree and \(\text{Right} \) is the right subtree. An empty tree is represented as the atom \(\text{void} \). Consider the following functions:

\[
\begin{align*}
\text{f1}(\text{void}) &= 0. \\
\text{f1}(t(_, \text{Left}, \text{Right})) &= N \Rightarrow \\
& \quad N = \text{f1}(\text{Left}) + \text{f1}(\text{Right}) + 1. \\
\text{f2}(\text{void}) &= []. \\
\text{f2}(t(\text{Value}, \text{void}, \text{void})) &= [\text{Value}]. \\
\text{f2}(t(_, \text{Left}, \text{Right})) &= L \Rightarrow \\
& \quad L = \text{f2}(\text{Left}) ++ \text{f2}(\text{Right}).
\end{align*}
\]

1. What is the result of each of the following function calls?
 (a) \(\text{f1}(t(1, \text{void}, \text{void})) \)
 (b) \(\text{f1}(t(1, t(2, \text{void}, \text{void}), t(3, \text{void}, \text{void}))) \)
 (c) \(\text{f2}(t(1, \text{void}, \text{void})) \)
 (d) \(\text{f2}(t(1, t(2, \text{void}, \text{void}), t(3, \text{void}, \text{void}))) \)

2. Rewrite \(\text{f1} \) and \(\text{f2} \) to make them tail-recursive.