
Computer & Information Science

1. (20) A rational number is a number that can be represented by a pair of integers—a
numerator and a denominator. Write a class Rational that represents rational numbers.
The class should support the following behavior:

 A constructor that accepts a numerator and a denominator
 A constructor that accepts a single integer representing a whole number (i.e., with a

denominator of 1).
 A default constructor that initializes the Rational to 1 (1/1).
 (Java) A toString method that returns the string representation num / denom.

(C++) A << operator that prints num / denom
 A multiply method/member function that returns a new Rational consisting of

the product of the receiver and (Rational) parameter.
 An inverse method that returns a new Rational representing the inverse

(reciprocal) of the receiver.
 A divide method that returns the quotient of the receiver and (Rational)

parameter. Remember --to divide two rationals, you multiply the first by the inverse
of the second.

 An equals method that returns whether two Rationals are the same. Assume 2 / 4
is not equal to 1 / 2 (i.e., you don’t have to deal with reducing the rationals to lowest
form).

2. Suppose you had the following Shape interface:

 interface Shape {
 int area();
 int perimeter(); // sum of the lengths of all sides
 int numberOfSides();
 };

and you wanted to code Rectangle and Square classes, both implementing Shape.

Here are some design choices.

i class Rectangle implements Shape

class Square implements Shape

totally independent

ii class Rectangle implements Shape
class Square extends Rectangle

Square extends Rectangle

iii class Square implements Shape
class Rectangle extends Square

Rectangle extends Square

a) Implement each of the above (i.e., for each implementation, code the Rectangle and
Square classes) — try to take advantage of as much OOP as possible. If you find
yourself unhappy with one or more of the implementations, all that counts is that the
methods work properly

b) Compare the implementations—which was best? worst? Justify your answers.

3.
a. What is the difference between overloading and overriding? Give an example of

each.

b. What is the difference between an interface and a class in Java?

c. What does overidding have to do with polymorphism?

d. Explain how the toString method of Java is a classic example of polymorphism.

e. Explain why C++ cannot for all practical purposes have a toString method.

f. What are the two things required to make have a function act polymorphically in
C++?

4. This question should be answered using Java.

a. What is an upcast? What is a downcast?

b. Given the hierarchy

 A

 B C

 D

Give a least two examples of an upcast and two examples of a downcast
(declare/create any variables/objects you want).

c. Are upcasts always legal? If not, under what circumstances would the upcast be
legal? Illegal?

d. Are downcasts always legal? If not, under what circumstances would the
downcast be legal? Illegal?

e. Using the above hierarchy, give an example of two classes that can NEVER be
cast to each other.

f. Explain why no cast is required when placing items into a collection object (e.g. a

Vector, or Set) but a cast is usually required when removing the item in order to
invoke the object’s methods.

