
Data Structures - Final Exam

Name:

Question 1 (60 points)

1.1 Consider the function f() on the list object alist.

void f(list<int>& alist)

{

list<int>::iterator iter ;

int j;

while(alist.size() > 1)

{

iter = alist.begin();

for(j = 0 ; j < alist.size()-1; j++)

iter++;

cout << *iter << " ";

alist.erase(iter);

}

}

Assume list alist has values 7 12 9 8 15. What is the output from f()?

1.2 Consider the following function f.

template <typename T>

void f(vector<T>& v) {

int i, n;

n = v.size();

for (i = 2; i < n; i++){

v[i-2] = v[i];

}

v.resize(n-2);

}

Assume the vector v has values <1, 2, 3, 4, 5>. What is the content of v after the
function call f(v)?

1.3 Describe the behavior of the function f defined below.

template <typename T>

void f(T arr[], int n){

queue<T> q;

int i;

for (i = 0; i < n; i++)

1



q.push(arr[i]);

i = 0;

while (!q.empty()){

arr[i] = q.front();

q.pop();

i++;

}

}

Assume arr contains values <1, 5, 4, 3, 2>. What is the content of arr after the
function call f(arr,5)?

1.4 The function createIntArray(n) creates a dynamic array of integers whose elements are
< 1, 2, . . . , n > and returns a pointer to the array as the return value. Complete the
function definition.

int *createIntArray(int n){

}

1.5 Consider the function

template <typename T>

void f(dnode<T> * & header)

{

dnode<T> *p = header->next, *q, *r;

while (p != header)

{

q = p->next;

while (q != header)

if (p->nodeValue == q->nodeValue)

{

r = q;

q = q->next;

r->prev->next = q;

q->prev = r->prev;

delete r;

}

else

q = q->next;

p = p->next;

}

}

Assume a doubly linked list contains nodes that have the characters in ”grammar”. Call
f() on the list and then copy the node values back to a string. The resulting string is

2



1.6 Consider a tree created by the following statement (refer to Question 3 for the definition
of tnode):

root = new tnode<char> (’*’,

new tnode<char>(’+’,

new tnode<char>(’3’),

new tnode<char>(’6’)),

new tnode<char>(’-’,

new tnode<char>(’5’),

new tnode<char>(’7’)),

);

1. Display the tree.

2. Give the postorder traversal of the tree.

3. Give the inorder traversal of the tree.

1.7 Show the output of the following program:

int main(){

int i;

int arr[] = {6, 3, 3, 4, 9, 6, 9, 3};

set<int> s(arr, arr+sizeof(arr)/sizeof(int));

set<int>::iterator setIter;

s.insert(10);

s.insert(2);

setIter = s.begin();

while (setIter != s.end()){

cout << *setIter << " ";

setIter++;

}

cout << endl;

}

1.8 The member function find(x) in the map class searches the map for an element with x as
key and returns an iterator to it if found, otherwise it returns an iterator to map::end.
Show the output of the following program:

void output_map(const map<int,string>& m, int from, int to) {

map<int,string>::const_iterator mapIter;

for (int i=from;i<=to;i++){

mapIter = m.find(i);

cout << i << " " << (*mapIter).second << endl;

}

}

3



int main(){

map<int,string> m;

m[0] = "zero";

m[1] = "ichi";

m[2] = "ni";

m[3] = "san";

output_map(m,1,2);

}

Question 2 (20 points)

Assume that the roster of CISC 3130 is represented as a list of student objects where the class
student is defined as follows:

class student {

public:

string name;

string id;

float grade;

student(string &n, string &i, float g) :

name(n), id(i), grade(g)

{}

};

The variable grade is assumed to hold a real number between 0.0 and 4.0. Write the following
functions:

(a) bool find(const list<student>& roster, const float g)

This function returns true if there is at least one student in the roster whose grade is
greater than or equal to g.

(b) void insert_sorted(list<student>& roster, student &stu)

Assume that roster is sorted by grade from the highest grade to the lowest grade, this
function inserts a student stu into roster such that the roster remains sorted after the
insertion.

(c) pair<float,float> low_high(const list<student>& roster)

Assume that roster is sorted by grade from the highest grade to the lowest grade, this
function returns a pair whose first member is the lowest grade and second member is
the highest grade of the roster.

(d) How would you write the function low high in (c) if the roster is not sorted?

Question 3 (20 points)

Given the following tnode class template:

4



<template <typename T>

class tnode {

public:

T data;

tnode<T> *left, *right;

};

write the following functions:

(a)
template <typename T>

int occurs(tnode<T> *root, const T &elem);

This function returns the number of times elem appears in the tree whose root is root.
Note that the tree may not be a binary search tree.

(b)
template <typename T>

bool equals(tnode<T> *root1, tnode<T> *root2);

This function returns true if the two binary trees have the same shape and value, i.e.,
if every corresponding pair of nodes in the two trees have the same value and the same
number of children.

(c)
template <typename T>

bool search_tree(tnode<T> *root);

This function returns true if the binary tree with the given root is a binary search tree.

5


