# Artificial Intelligence 

Roman Barták
Department of Theoretical Computer Science and Mathematical Logic

- Uninformed (blind) search algorithms can find an (optimal) solution to the problem, but they are usually not very efficient.
- Informed (heuristic) search algorithms can find solutions more efficiently thanks to exploiting problem-specific knowledge.
- How to use heuristics in search?
- BFS, A*, IDA*, RBFS, SMA*
- How to build heuristics?
- relaxation, pattern databases


## Information in search

Greedy best-first search

- Let us try to expand first the node that is closest to some goal state, i.e. $\mathrm{f}(\mathrm{n})=\mathrm{h}(\mathrm{n})$.
- greedy best-first search algorithm


## Example (path Arad $\rightarrow$ Bucharest): <br> - We have a table of direct distances from any city to Bucharest. <br> - Note: this information was not part of the original problem formulation!



- We already know that the greedy algorithm may not find the the optimal path.
- Can we at least always find some path?
- If we expand first the node with the smallest cost then the algorithm may not find any solution.
Example: path Iasi $\rightarrow$ Fagaras
- Go to Neamt, then back to Iasi, Neamt, .
- We need to detect repeated visits in cities!
- Time complexity $\mathbf{O}\left(\mathbf{b}^{m}\right)$, where $m$ is the maximal depth
- Memory complexity $\mathbf{O}\left(\mathbf{b}^{m}\right)$
- A good heuristic function can significantly decrease the practical complexity.



## What about completeness and optimality of A*?

First a few definitions:

- admissible heuristic $h(n)$
- $\mathbf{h}(\mathbf{n}) \leq$,the cost of the cheapest path from $\boldsymbol{n}$ to goal "
- an optimistic view (the algorithm assumes a better cost then the real one)
- function $f(n)$ in $A^{*}$ is a lower estimate of the cost of path through $n$
- monotonous (consistent) heuristic $\mathbf{h ( n )}$
- let $n^{n}$ be a successor of $n$ via action a and $c\left(n, a, n^{\prime}\right)$ be the transition cost
- $h(n) \leq c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right)$
- this is a form of triangle inequality

Monotonous heuristic is admissible.
let $n_{1}, n_{2}, \ldots, n_{k}$ be the optimal path from $n_{1}$ to goal $n_{k}$, then $h\left(n_{i}\right)-h\left(n_{i+1}\right) \leq c\left(n_{i} ; a_{i}, n_{i+1}\right)$, via monotony
$h\left(n_{1}\right) \leq \Sigma_{i=1, \ldots, k-1} c\left(n_{i}, a_{i}, n_{i+1}\right)$, after ,,sum"
For a monotonous heuristic the values of $f(n)$ are not decreasing over any path.
Let $n^{\prime}$ be a successor of $n$, i.e. $g\left(n^{\prime}\right)=g(n)+c\left(n, a, n^{\prime}\right)$, then
$f\left(n^{\prime}\right)=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)=g(n)+c\left(n, a, n^{\prime}\right)+h\left(n^{\prime}\right) \geq g(n)+h(n)=f(n)$

## Algorithm A*: optimality

- Let us now try to use $\mathbf{f ( n )}=\mathbf{g}(\mathbf{n})+\mathbf{h ( n )}$
- Recall that $g(n)$ is he cost of path from root to $n$
- probably the most popular heuristic search algorithm
$-f(n)$ represents the cost of path through $n$
- the algorithm does not extend already long paths


If $h(n)$ is an admissible heuristic then the algorithm $A^{*}$ in TREE-SEARCH is optimal.

- in other words - the first expanded goal is optimal
- Let $\mathrm{G}_{2}$ be sub-optimal goal from the fringe and $\mathrm{C}^{*}$ be the optimal cost
- $f\left(G_{2}\right)=g\left(G_{2}\right)+h\left(G_{2}\right)=g\left(G_{2}\right)>C^{*}$, because $h\left(G_{2}\right)=0$
- Let n be a node from the fringe and being on the optimal path
- $f(n)=g(n)+h(n) \leq C^{*}$, via admissibility of $h(n)$
- together
- $f(n) \leq C^{*}<f\left(G_{2}\right)$,
i.e., the algorithm must expand $n$ before $\mathrm{G}_{2}$ and this way it finds the optimal path.



## - If $h(n)$ is a monotonous heuristic then the algorithm A* in GRAPH-SEARCH is optimal.

- Possible problem: reaching the same state for the second time using a better path - classical GRAPH-SEARCH ignores this second path!
- A possible solution: selection of better from both paths leading to a close node (extra bookkeeping) or using monotonous heuristic.
- for monotonous heuristics, the values of $f(n)$ are not decreasing over any path
- A* selects for expansion the node with the smallest value of $f(n)$, i.e., the values $f(m)$ of other open nodes $m$ are not smaller, i.e., among all "open" paths to $n$ there cannot be a shorter path than the path just selected (no path can shorten)
- hence, the first closed goal node is optimal
- For non-decreasing function $\mathrm{f}(\mathrm{n})$ we can draw contours in the state graph (the nodes inside a given contour have f-costs less than or equa to the contour value.
- for $h(n)=0$ we obtain circles around the start
- for more accurate $h(n)$ we use, the bands will stretch toward the goal state and become more narrowly focused around the optimal path.

- A* expands all nodes such that $\mathrm{f}(\mathrm{n})<\mathrm{C}^{*}$ on the contour
- A* can expand some nodes such that $f(n)=C^{*}$
- the nodes $n$ such that $f(n)>C^{*}$ are never expanded
- the algorithm A* is optimality efficient for any given consistent heuristic

Time complexity:

* can expand an exponential number of nodes
- this can be avoided if $\left|h(n)-h^{*}(n)\right| \leq O\left(\log h^{*}(n)\right)$, where $h^{*}(n)$ is the cost of


## Space complexity:

$A^{*}$ keeps in memory all expanded nodes
A* usually runs out of space long before it runs out out of time

Iterative-deepening A

- A simple way to decrease memory consumption is iterative deepening.


## - Algorithm IDA*

| unction $\mathrm{IDA}^{*}($ problem $)$ returns a solution sequence nputs. problem, a problem <br> tatic: $f$-Limit, the current $f$ - $\operatorname{Cos} \mathrm{T}$ limit mot, a node <br> root $\leftarrow$ MAKE-NODE(INITIAL-STATE[problem]) <br> f-limit $\leftarrow f$ - $\operatorname{Cost}($ root $)$ $\qquad$ solution, f-limit $\leftarrow$ DES-CONIOUR(root, f-limit) <br> if solution is non-null then return solution if $f$-limit $=\infty$ then return failure; end <br> function DFS-CONTOUR(node, $f$-limit) returns a solution sequence and a new $f$-CosT limit inputs: node, a node <br> $f$-limin, the current $f$-Cost limit $\qquad$ <br> if $f$ - $\operatorname{Cost}[$ node $]>f$-limit then return null, $f$ - $\operatorname{CosT}[$ node $]$ <br> if GOAL-TEST[problem](STATE%5Bnode%5D) then return node,f-limit <br> for each node $s$ in SuCCESSORS(node) do <br> solution, new- $f \leftarrow$ DFS-CONTOUR( $s, f$-limit $)$ <br> if solution is non-null then return solution, $f$-limit <br> next $f \leftarrow \operatorname{Min}($ next $-f$, new- $f$; ; end <br> return null, next-f |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |

- the search limit is defined using the cost $f(n)$
instead of depth
- for the next iteration we use the smallest value
$\mathrm{f}(\mathrm{n})$ of node n that exceeded the limit in the last iteration
- frequently used algorithm


## Recursive best-first search

- Let us try to mimic standard best-first search, but using only linear space
- the algorithm stops exploration if there is an alternative path with better cost f(n)
- when the algorithm goes back to node n, it replaces the value f(n) using
- If $h(n)$ is an admissible heuristic then the algorithm is optimal.
- Space complexity O(bd)
- Time complexity is still exponential (suffers from excessive node re-generation)

```
*) RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution, or failure
    RBFS(problem,MAKE-NODE(INITIAL-STATE[problem]), }\infty\mathrm{ )
mection RBES( problem,node, f-limit) returns a solution, or failure and a new f-cost limit
    if GOAL-TEST[ problem](STATE[node]) then return node
    PAND(node, probl
    successors is empty then r
    *)
    f
        best\leftarrowthe lowest f}\mathrm{ -value node in successors
        if f[best]>f_limit then return failure, f[best]
        alternative \leftarrowthe second-lowest f-value among successors
        result,f[best]}\leftarrow<\textrm{RBFS}(\mathrm{ problem, best, min(f limit, alternative))
        if result ff failure then return result
```



- IDA* and RBFS do not exploit availably memory!
- This is a pity as the already expanded nodes are reexpanded again (waste of time)
- Let us try to modify classical A*

```
Inction SMA**problem) returns a solution sequenc
f(unction SMA*"pmblemm returns a solution sequen
Queve&MAKE-QuruE({MaKE-Node(INTTAL-State[problem])]
    Moop do dif
        if Queue is emply then return failure
        M
        s-^NEXSUCCEssoR(n)
        if sis not a goal and is at maximumum depht then 
    Clse
    if all of's successorsthave becn generated then
    M,
    MifSUCCESSORS(n) all in memory then remove n from Q
        delete shallowes, highestff cost node in Quenc
        Iemove it foom is parent's successor liv
    \begin{subarray}{c}{\mathrm{ insertr, is paren!}}\\{\mathrm{ end }}\end{subarray}
end
```

- when memory is full drop the worst leaf node - the node with the highest $f$-value (if there are such nodes then drop the
shallowest node)
- similarly to RBFS back up the value of the forgotten node to its parent


## How to find admissible heuristics?

## Example: 8-puzzle

- 22 steps to goal in average
- branching factor around 3

- (complete) search tree: $3^{22} \approx 3,1 \times 10^{10}$ nodes
- the number of reachable states is only $9!/ 2=181440$
- for 15 -puzzle there are $10^{13}$ states
- We need some heuristic, preferable admissible
- $h_{1}=$ "the number of misplaced tiles"


## $=8$

- $\mathrm{h}_{2}=$, the sum of the distances of the tiles from the goal positions"

$$
=3+1+2+2+2+3+3+2=18
$$

a so called Manhattan heuristic

- the optimal solution needs 26 steps


## How to characterize the quality of a heuristic? Effective branching factor $b^{*}$

- Let the algorithm needs N nodes to find a solution in depth d
$-b^{*}$ is a branching factor of a uniform tree of depth $d$ containing $N+1$ nodes

$$
N+1=1+b^{*}+\left(b^{*}\right)^{2}+\ldots+\left(b^{*}\right)^{d}
$$

## Example:

## - 15-puzzle

- the average over 100 instances for each of various solution lengths
- Is $\mathbf{h}_{\mathbf{2}}$ (from 8-puzze) always better than $\mathbf{h}_{\mathbf{1}}$ and how to recognize it?
- notice that $\forall n h_{2}(n) \geq h_{1}(n)$
- We say that $\mathbf{h}_{2}$ dominates $\mathbf{h}_{1}$
- $A^{*}$ with $h_{2}$ never expands more nodes than $A^{*}$ with $h_{1}$
- A* expands all nodes such that $\mathrm{f}(\mathrm{n})<\mathrm{C}^{*}, \mathrm{tj} . \mathrm{h}(\mathrm{n})<\mathrm{C}^{*}-\mathrm{g}(\mathrm{n})$
- In particular if it expands a node using $h_{2}$, then the same node must be expanded using $h_{1}$
- It is always better to use a heuristic function giving higher values provided that
- the limit $C^{*}-\mathbf{g ( n )}$ is not exceeded (then the heuristic would not be admissible)
- the computation time is no too long


## Can an agent construct admissible heuristics for any

 problem?Yes via problem relaxation!

- relaxation is a simplification of the problem such that the solution of the original problem is also a solution of the relaxed problem (even if not necessarily optimal)
- we need to be able to solve the relaxed problem fast
- the cost of optimal solution to a relaxed problem is a lower bound for the solution to the original problem and hence it is an admissible (and monotonous) heuristic for the original problem
- Example (8-puzzle)
- A tile can move from square A to square B if:
- A is horizontally or vertically adjacent to B
- $B$ is blank
- possible relaxations (omitting some constraints to move a tile):
- a tile can move from square $A$ to square $B$ if $A$ is adjacent to $B$ (Manhattan distance)
- a tile can move from square $A$ to square $B$ if $B$ is blank
- a tile can move from square $A$ to square $B$ (heuristic $h_{1}$ )

Another approach to admissible heuristics is using a pattern database

- based on solution of specific sub-problems (patterns)
- by searching back from the goal and recording the cost of each new pattern encountered

- heuristic is defined by taking
 the worst cost of a pattern that matches the current state
- Beware! The "sum" of costs of matching patterns need not be a admissible (the steps for solving one pattern may be used when solving another pattern).

If there are more heuristics, we can always use the maximum value from them (such a heuristic dominates each of used heuristics).

