
Ar#ficial)Intelligence!
!

Roman Barták 
Department of Theoretical Computer Science and Mathematical Logic 

Problem Solving: Informed (Heuristic) Search 

Introduc*on!

•  Uninformed (blind) search algorithms can 
find an (optimal) solution to the problem, 
but they are usually not very efficient.  

•  Informed (heuristic)  search algorithms 
can find solutions more efficiently thanks to 
exploiting problem-specific knowledge. 

– How to use heuristics in search? 
•  BFS, A*, IDA*, RBFS, SMA* 

– How to build heuristics? 
•  relaxation, pattern databases 

Informa*on!in!search!

•  Recall that we are looking for (the shortest) path from the 
initial state to some goal state. 

•  Which information can help the search algorithm? 
–  For example, the length of path to some goal state. 
–  However such information is usually not available (if it is available 

then we do not need to do search). Usually some evaluation 
function f(n) is used to evaluate „quality“ of node n based on the 
length of path to the goal. 

–  best-first search 
•  The node with the smallest value of f(n) is used for expansion. 

–  There are search algorithms with different views of f(n). Usually 
the part of f(n) is a heuristic function h(n) estimating the length 
of the shortest (cheapest) path to the goal state.. 
•  Heuristic functions are the most common form of additional 

information given to search algorithms 
•  We will assume that h(n) = 0 ⇔ n is goal. 

Greedy!best5first!search!

•  Let us try to expand first the node that is closest to some 
goal state, i.e. f(n) = h(n). 
–  greedy best-first search algorithm 

Example (path Arad → Bucharest): 
–  We have a table of direct distances from any city to Bucharest. 
–  Note: this information was not part of the original problem 

formulation! 

Nejkratší cesta? 

450 

418 



Greedy!best5first!search:!analysis!

•  We already know that the greedy algorithm may not 
find the the optimal path. 

•  Can we at least always find some path? 
–  If we expand first the node with the smallest cost then the 

algorithm may not find any solution. 
Example: path Iasi → Fagaras 

–  Go to Neamt, then back to Iasi, Neamt, … 
–  We need to detect repeated visits in cities! 

•  Time complexity O(bm), 
where m is the maximal depth 

•  Memory complexity  O(bm) 

•  A good heuristic function 
can significantly decrease 
the practical complexity. 

Algorithm!A*!

•  Let us now try to use f(n) = g(n) + h(n) 
–  Recall that g(n) is he cost of path from root to n 
–  probably the most popular heuristic search algorithm 
–  f(n) represents the cost of path through n 
–  the algorithm does not extend already long paths 

Proper*es!of!A*!

What about completeness and optimality of A*? 
First a few definitions: 

–  admissible heuristic h(n) 
•  h(n) ≤ „the cost of the cheapest path from n to goal “ 
•  an optimistic view (the algorithm assumes a better cost then the real one) 
•  function f(n) in A* is a lower estimate of the cost of path through n 

–  monotonous (consistent) heuristic h(n) 
•  let n‘ be a successor of n via action a and c(n,a,n‘) be the transition cost 
•  h(n) ≤ c(n,a,n‘) + h(n‘) 
•  this is a form of triangle inequality 

Monotonous heuristic is admissible. 
 let n1, n2,…, nk be the optimal path from n1 to goal nk, then 
 h(ni) - h(ni+1) ≤ c(ni,ai,ni+1), via monotony 
 h(n1) ≤ Σi=1,..,k-1 c(ni,ai,ni+1), after „sum“ 

For a monotonous heuristic the values of f(n) are not decreasing 
over any path. 
 Let n‘ be a successor of n, i.e. g(n‘) = g(n) + c(n,a,n‘), then 
 f(n‘) = g(n‘) + h(n‘) = g(n) + c(n,a,n‘) + h(n‘) ≥ g(n) + h(n) = f(n) 

Algorithm!A*:!op*mality!

•  If h(n) is an admissible heuristic then the 
algorithm A* in TREE-SEARCH is optimal. 
–  in other words – the first expanded goal is optimal 
–  Let G2 be sub-optimal goal from the fringe and C* be 

the optimal cost 
•  f(G2) = g(G2) + h(G2) = g(G2) > C*, because h(G2) = 0 

–  Let n be a node from the fringe and being on the 
optimal path 
•  f(n) = g(n) + h(n) ≤ C*, via admissibility of h(n) 

–  together 
•  f(n) ≤ C* < f(G2), 

 i.e., the algorithm must expand n 
before G2 and this way it finds 
the optimal path. 



Algorithm!A*:!op*mality 

•  If h(n) is a monotonous heuristic then the 
algorithm A* in GRAPH-SEARCH is optimal. 
–  Possible problem: reaching the same state for the second 

time using a better path – classical GRAPH-SEARCH 
ignores this second path! 

–  A possible solution: selection of better from both paths 
leading to a close node (extra bookkeeping) or using 
monotonous heuristic. 
•  for monotonous heuristics, the values of f(n) are not decreasing 

over any path 
•  A* selects for expansion the node with the smallest value of f(n), 

i.e., the values f(m) of other open nodes m are not smaller, 
i.e., among all “open” paths to n there cannot be a shorter path 
than the path just selected (no path can shorten) 

•  hence, the first closed goal node is optimal 

Algorithm!A*:!proper*es 

•  For non-decreasing function f(n) we can draw contours in the state 
graph (the nodes inside a given contour have f-costs less than or equal 
to the contour value. 
–  for h(n) = 0 we obtain circles around the start 
–  for more accurate h(n) we use, the bands will 

stretch toward the goal state and become 
more narrowly focused around the optimal path. 

–  A* expands all nodes such that f(n) < C* on the contour 
–  A* can expand some nodes such that f(n) = C* 
–  the nodes n such that f(n) > C* are never expanded 
–  the algorithm A* is optimality efficient  for any given consistent heuristic 

Time complexity: 
A* can expand an exponential number of nodes 
–  this can be avoided if |h(n)-h*(n)| ≤ O(log h*(n)), where h*(n) is the cost of 

optimal path from n to goal 

Space complexity: 
A* keeps in memory all expanded nodes 

A* usually runs out of space long before it runs out out of time 

Itera*ve5deepening!A*!

•  A simple way to decrease memory 
consumption is iterative deepening. 

•  Algorithm IDA* 
–  the search limit is defined 

using the cost f(n) 
instead of depth 

–  for the next iteration we 
use the smallest value 
f(n) of node n that 
exceeded the limit in the 
last iteration 

–  frequently used algorithm 

Recursive!best5first!search!

•  Let us try to mimic standard best-first search, but using only linear 
space 
–  the algorithm stops exploration if there is an alternative path with better 

cost f(n) 
–  when the algorithm goes back to node n, it replaces the value f(n) using 

the cost of successors (remembers the best leaf in the forgotten subtree) 
•  If h(n) is an admissible heuristic then the algorithm is optimal. 
•  Space complexity O(bd) 
•  Time complexity is still exponential (suffers from excessive node 

re-generation) 



Recursive!BFS!5!example!

2. The path from  Rimnicu Vilcea now seems too 
expensive, go back to thes closest neighbour – 
Fagaras 
a more accurate cost is stored for  Rimnicu Vilcea 3. The path through Fagaras is now worse, go back 

to Rimnicu Vilcea and expand the best successor– 
Pitesti 

1. After expansion of Arad, Sibia,  Rimnicu Vilcea 

Simplified!memory5bounded!A*!

•  IDA* and RBFS do not exploit availably memory! 
•  This is a pity as the already expanded nodes are re-

expanded again (waste of time) 
•  Let us try to modify classical A* 

–  when memory is full, 
drop the worst leaf 
node – the node with 
the highest f-value (if 
there are such nodes 
then drop the 
shallowest node) 

–  similarly to RBFS back 
up the value of the 
forgotten node to its 
parent 

Path from root to this non-
goal node can be stored in 
memory, hence no optimal 
path through this node can 
be found. 

Simplified!memory5bounded!A*!5!example 

•  Assume memory for 
three nodes only. 

•  If there is enough 
memory to store an 
optimal path then SMA* 
find optimal solution. 

•  Otherwise it finds the 
best path with available 
memory. 
–  If the cost of J would be 

19, then this is optimal 
goal, but the path to it 
can be stored in memory! 

g(n) + h(n) = f(n) 

cílový 
uzel 

c(A,B) 

Looking!for!heuris*cs!

How to find admissible heuristics? 

Example: 8-puzzle 
•  22 steps to goal in average 
•  branching factor around 3 
•  (complete) search tree: 322 ≈ 3,1 × 1010 nodes 

•  the number of reachable states is only 9!/2 = 181 440 
•  for 15-puzzle there are 1013 states 
•  We need some heuristic, preferable admissible 

–  h1  = „the number of misplaced tiles“ 
  = 8 

–  h2  = „the sum of the distances of the tiles from the goal positions“ 
  = 3 + 1 + 2 + 2 + 2 + 3 + 3 + 2 = 18 
 a so called Manhattan heuristic 

–  the optimal solution needs 26 steps 



Performance!of!heuris*cs!

How to characterize the quality of a heuristic? 
Effective branching factor b* 
– Let the algorithm needs N nodes to find a 

solution in depth d 
– b* is a branching factor of a uniform tree of 

depth d containing N+1 nodes 
N+1 = 1 + b* + (b*)2 + … + (b*)d  

Example: 
–  15-puzzle 
–  the average over 100 

instances for each of 
various solution lengths 

Dominance!

•  Is h2 (from 8-puzzle) always better than h1 and 
how to recognize it? 
–  notice that ∀n h2(n) ≥ h1(n) 
–  We say that h2 dominates h1 
–  A* with h2 never expands more nodes than A* with h1 

•  A* expands all nodes such that f(n) < C*, tj. h(n) < C* - g(n) 
•  In particular if it expands a node using h2, then the same node 

must be expanded using h1 

•  It is always better to use a heuristic 
function giving higher values provided that 
–  the limit C* - g(n) is not exceeded (then the 

heuristic would not be admissible) 
–  the computation time is no too long 

Relaxa*on!

Can an agent construct admissible heuristics for any 
problem? 

Yes via problem relaxation! 
–  relaxation is a simplification of the problem such that the solution of 

the original problem is also a solution of the relaxed problem (even 
if not necessarily optimal) 

–  we need to be able to solve the relaxed problem fast 
–  the cost of optimal solution to a relaxed problem is a lower bound 

for the solution to the original problem and hence it is an admissible 
(and monotonous) heuristic for the original problem 

•  Example (8-puzzle) 
–  A tile can move from square A to square B if: 

•  A is horizontally or vertically adjacent to B 
•  B is blank 

–  possible relaxations (omitting some constraints to move a tile): 
•  a tile can move from square A to square B if A is adjacent to B 

(Manhattan distance) 
•  a tile can move from square A to square B if B is blank 
•  a tile can move from square A to square B (heuristic h1) 

PaGern!databases!

Another approach to admissible heuristics is using a 
pattern database 
–  based on solution of specific sub-problems (patterns) 
–  by searching back from the goal 

and recording the cost of each 
new pattern encountered 

–  heuristic is defined by taking 
the worst cost of a pattern that matches the current state 

–  Beware! The “sum” of costs of matching patterns need not be 
a admissible (the steps for solving one pattern may be used 
when solving another pattern). 

If there are more heuristics, we can always use the 
maximum value from them (such a heuristic 
dominates each of used heuristics). 


