Programming Languages and Their Implementation

2004

Choose three out of the following four questions. Only the first three will be counted into your score if you choose more than three.

1. What is dynamic binding? Explain why dynamic binding is necessary in Java?

2. Consider the following two classes in Java named Node and BinaryTree:

Both classes extend Object, the default super class. The Object class provides a method, called clone(), which makes a shallow copy of this object. For example, let b be a reference of a BinaryTree object, the message b.clone() creates an instance of the BinaryTree class and initializes its root field with the one in the object referenced by b. In other words, the BinaryTree object is copied but its field root is not. Add a method clone() to each of the classes such that it makes a deep copy of this object (a deep copy of an object is a copy that contains deep copies of the fields).

3. Consider the following context-free grammar for expressions:

E (E+T | E-T | T

T (T*F | T/F | F

F (Integer | ‘(‘ E ’)’
Where E, T, F, and Integer are non-terminals, and +, -, *, /, ‘(‘, and ‘)’ are terminals. Assume Integer is defined as in Prolog. So, a term X is an integer iff the call integer(X) succeeds. Write a Prolog program to evaluate expressions. Let exp/2 be the top-level predicate. The following gives possible queries to your program and their expected answers:

?- exp([‘(‘, 1, +, 2, ’)’, *, 3],Res).

Res=9

?-exp([1, +, 2],Res)

Res=3

?-exp([1, +],Res)

no

?-exp([‘(‘, ’)’],Res)

no

You can assume that your Prolog system can handle left recursion, so you do not need to eliminate left recursion from the grammar.

4. Let map and fold be two high-order Haskell functions defined in the following:

Explain the functionality of the following three functions f1, f2, and f3.

class Node implements Cloneable {

 	int elm;

	Node left,right;

	public Node(int elm, Node left, Node right){

		this.elm = elm;

 this.left = left;

 this.right = right;

	}

}

class BinaryTree implements Cloneable {

 Node root;

	 public BinaryTree(Node root){

		this.root = root;

	 }

}

map :: (a->b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

fold :: (a->b->a)-> a -> [b] -> a

fold f v0 [] = v0

fold f v0 (x:xs) = fold f (f v0 x) xs

f1 xs = fold (*) 1 xs

f2 xs = fold (+) 0 (map (\x->x*x) xs)

f3 xs ys = [(x,y) | x<-xs, y<-ys]

PAGE
1
@ Copyright: Neng-Fa Zhou

