
10-1Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

Pointers

! Every storage location in the memory of a computer has a
number which identifies it uniquely. This identifying number
is called its address.

! Every variable in C++ is assigned a memory location and thus
an address. Sometimes it is desirable to refer to a variable's
address.

! A pointer is a variable that can hold an address as its value.

! The Address Operator & :
One way to access the address of a variable is to place the

address operator, an ampersand (&), in front of the
variable's name.

declaration address
int sum; &sum
double sales; &sales
char initial; &initial

! Declaring a Pointer Variable:
int *iptr;
char *cptr;
double *dptr;

! Assigning a Value to a Pointer Variable:
iptr = ∑
cptr = &initial;
cptr = &sales;

! In C++, there is a special value for a pointer to indicate that
it is currently not pointing at anything, This value is NULL.

int *myPtr = NULL; //this is called a NULL Pointer
int *myPtr2 = 0; //0 is equivalent to NULL

10-2Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

! The Dereferencing Operator * :
- The notation *iptr means the object that iptr points to (or

the contents of the memory location pointed to by iptr).
- This operator allows us to access memory locations through

indirect addressing.

! Using Pointers with * and &:
int num1 = 5, num2 = 3;
int *iptr;

iptr = &num1;
cout << "num1 holds “ << num1 << “ and num2 holds ",

<< num2 << endl;
cout << "and the location iptr points to holds “ << *iptr

<< endl;
iptr = &num2;
cout << "num1 holds “ << num1 << “ and num2 holds ",

<< num2 << endl;
cout << "and the location iptr points to holds “ << *iptr

<< endl;

- Output:
num1 holds 5 and num2 holds 3
and the location iptr points to holds 5
num1 holds 5 and num2 holds 3
and the location iptr points to holds 3

! Using Pointers to Change a Storage Location's Value:
int num = 5;
int *iptr = # // note initialization of p

*iptr = 10;
*iptr = *iptr + 1;
(*iptr)++; //not *iptr++ which first increments iptr

10-3Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

Using Parameters Which are Pointers

! Program:
/* program to try to add one to function parameter */
#include <stdio.h>
void trytoadd1(int);

void main()
{

int k = 5;

cout << "in main - before call: " << k << endl;
trytoadd1(k);
cout << "in main - after call: " << k << endl;

}

/* function that tries to add one to its parameter */
void trytoadd1(int x)
{

cout << "in function - before adding: " << x << endl;
x++;
cout << "in function - after adding: " << x << endl;
return;

}

- Output:
in main - before call: 5
in function - before adding: 5
in function - after adding: 6
in main - after call: 5

WHAT WENT WRONG???

10-4Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

! Correct Version of Program - using Pointers:
/* program to add one to function parameter */
#include <stdio.h>
void add1(int *);

void main()
{

int k = 5;

cout << "in main - before call: " << k << endl;
add1(&k);
cout << "in main - after call: " << k << endl;

}

/* function that adds one to its parameter */
void add1(int *x)
{

cout << "in function - before adding: " << *x << endl;
(*x)++;
cout << "in function - after adding: " << *x << endl;
return;

}

- Output:
in main - before call: 5
in function - before adding: 5
in function - after adding: 6
in main - after call: 6

10-5Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

! Correct Version of Program - using Reference Parameters:
/* program to add one to function parameter */
#include <iostream>
using namespace std;

void add1(int &); //function prototype

int main()
{

int k = 5;

cout << "in main - before call: "<< k << endl;
add1(k);
cout << "in main - after call: "<< k << endl;
return 0;

}

/* function that adds one to its parameter */
void add1(int &x) //x is receiving a reference to k
{

cout << "in function - before adding: “ << x << endl;
x++;
cout << "in function - after adding: “ << x << endl;
return;

}

- Output:
in main - before call: 5
in function - before adding: 5
in function - after adding: 6
in main - after call: 6

! Notes:
- int & means reference to an integer. This means that the

formal parameter and the actual parameter (or argument)
are the same, in the sense that any change to the value of
the formal parameter will cause a like change to the value
of the actual parameter. (The formal parameter becomes an
alias for the actual parameter.)

10-6Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

Pointers and Arrays

! In C++, a reference to the name of an array without a
subscript, means the address of the array.

! When an array is sent as a parameter to a function, only the
address is sent.

! Because the array name is itself an address, we do not preface
it by an & when passing it to a function.

int readdata(int numbers[]) // function header

num = readdata(mark); // function call

! Using * in the Function Header for an Array Parameter:
int readdata(int *numbers) // equivalent header

! Note:
- a pointer variable holds a value that can change
- an array name is a constant.

int a,b;
int *ptr;
int num[100];

ptr = &a;
ptr = &b;
ptr = num;
ptr = &num[0];
ptr = &num[1];
ptr = &num[99];

num = &a; // illegal
num = ptr; // illegal

10-7Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

! Using & to Send an Address to an Array Parameter:
sum = sumarray(&num[0]); // same as sumarray(num)

! Example:
/* ... */
int sumarray(int numbers[], int n)
{

int count,sum=0;

for (count = 0; count < n; count++)
sum += numbers[count];

return(sum);
}

- To sum the elements 0 to count-1 of the num array:
sum = sumarray(num,count);

- To sum the elements 5 to 11 of the num array:
sum = sumarray(&num[5],7);

10-8Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

Pointer Arithmetic

! Pointer Arithmetic can be used to address the elements of an
array without subscripts.

! We use direct address manipulation to move from one array
element to the next.

! The techniques is based on the displacement or offset of an
element, which measures how far an element is from the
beginning of the array.

! Example:
int num[5];

subscript 0 1 2 3 4
num 10 20 45 50 68

offset +0 +1 +2 +3 +4

Note: num[i] is equivalent to *(num + i)

num[0] = 10;
*num = 10;

num[1] = 20;
*(num+1) = 20;

num[2] = 45;
*(num+2) = 45;

Note: int num[] is equivalent to int *num

10-9Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

! Example:
int i,sum=0;
int num[100];
int *ptr = num;

for (i = 0; i < 100; i++)
sum += num[i];

for (i = 0; i < 100; i++) // equivalent loop
sum += *(num + i);

for (i = 0; i < 100; i++) { // equivalent loop
sum += *ptr;
ptr++;

}

! We can use pointer notation to send a function the address of
a location offset within an array.

sum = sumarray(&num[5],7);

sum = sumarray(num+5,7); // equivalent call

10-10Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

Comparing Pointers

! In C++, relational operators can be used to compare pointers.
if (ptr1 == ptr2) //compares addresses
if (*ptr1 == *ptr2) //compares contents

// This program uses a pointer to display the contents
// of an integer array. It illustrates the comparison of
// pointers.
#include <iostream>
using namespace std;

int main()
{
 const int SIZE = 8;

int set[] = {5, 10, 15, 20, 25, 30, 35, 40};
int *numPtr = set; // Make numPtr point to set

cout << "The numbers in set are:\n";
cout << *numPtr << " "; // Display first element
while (numPtr < &set[SIZE-1])
{
 // Advance numPtr to the next element.

numPtr++;
// Display the value pointed to by numPtr.
cout << *numPtr << " ";

}

// Display the numbers in reverse order
cout << "\nThe numbers in set backwards are:\n";
cout << *numPtr << " "; // Display last element
while (numPtr > set)
{
 // Move backward to the previous element.

numPtr--;
// Display the value pointed to by numPtr.
cout << *numPtr << " ";

}
return 0;

}

10-11Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

Pointers to Constants

! A pointer to a constant can not be used to change the value
it points to.

! Example:

const int SIZE = 4;
const double payRates[SIZE] = (18.55,17.45,12.85,14.97};

...

void displayPayRates(const double *rates, int size)
{

//display all the pay rates
for (int count = 0; count < size; count++)

cout << “pay rate for employee” << count+1
<< “ is $” << *(rates+count) << endl;

return;
}

! Note:
The variable pointer rates points to a constant double. The
identifier rates itself is a variable; that is, it can point to
different constant doubles.

! Note:
Use of const in the function header, protects the data for
being modified within the function.

10-12Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

Constant Pointers

! A constant pointer is a pointer that once initialized with an
address, can not point to anything else. (While the address
can not change, the data at the address can change.)

! Example:

int value = 22;
int * const ptr = &value; //ptr is a constant pointer

*ptr = 100;
*ptr = 200;

! Constant pointers can be used without initialization in function
headers. The pointer will be initialized by the argument upon
a call to the function. The argument value can be different for
each call.

! Example:

void setToZero(int * const ptr)
{

*ptr = 0;

return;
}

//legal calls to the function setToZero()
int x,y,z;
...

setToZero(&x);
setToZero(&y);
setToZero(&z);

10-13Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

Dynamic Memory Allocation

! Dynamic memory allocation allows for the allocation of storage
for a variable while the program is running (“on the fly”).

! Dynamic memory allocation is only possible through the use of
pointers.

! Use the new operator to allocate memory:

! Example:
int *iptr;

iptr = new int; //requests memory from the OS to store
//an integer

*iptr = 50; //use the newly allocated memory

! Example:
int *iptr;

iptr = new int[100]; //requests memory from the OS to
// create an array of 100 integers

for (int count = 0; count < 100; count++)
iptr[count] = 1; //uses the newly allocated array

! Note: When memory can not be allocated (e.g., you asked for
too much), the new operator will by default cause termination
of the program with an appropriate error message in a process
known as throwing an exception. (This will covered at a later
date.)

10-14Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

Releasing (or Deleting) Dynamic Memory:

! When a program has finished using dynamicaaly allocated
memory, it should release it for future use.

! The delete operator is used to free memory that was
previously allocated with new.

! Example:

delete iptr; //frees a dynamically allocated variable

delete [] iptr; //frees a dynamically allocated array

! Note:
Memory dynamically allocated in a class constructor should be
deleted in the class destructor.

10-15Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

Returning Pointers from Functions

! Functions must not return a pointer to a local variable:

string * getName()
{

string myname;
string *name = &myname;
cout << “Enter your name: ”;
getline(cin, *name);
return name; //the variables are destroyed upon return

}

! Functions can return a pointer to an item that was passed as
an argument:

string * getName(string *name)
{

cout << “Enter your name: ”;
getline(cin, *name);
return name; //the address name points to still exists

//upon return
}

! Functions can return a pointer to dynamically allocated
memory:

string * getName()
{

string *name;

name = new string; //dynamic memory allocation
cout << “Enter your name: ”;
getline(cin, *name);
return name; //the string still exists upon return

}

10-16Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

Pointers to Structures

! Example of a Pointer to a Structure:
struct Name {

string last;
string first;

};

struct Classmark {
int test[5];
double average;
char lettergrade;

};

struct Student {
Name name;
int numclasses;
Classmark class[5];
double overallavg;

};

Student student; //a Student object

Student *studentptr; //a pointer to a Student object

! Usage:
studentptr = &student;
(*studentptr).numclasses = 5;
(*studentptr).overallavg = 3.15;
cout << (*studptr).numclasses) << endl;
cout << (*studptr).name.last) << endl;
cin >> &(*studptr).numclasses;
cin >> (*studptr).name.last;

! The -> Operator:
ptr -> member is the same as (*ptr).member

studentptr -> numclasses = 5;
studentptr -> overallavg = 3.15;
cout << studptr -> numclasses;
cout << studptr -> name.last;
cin >> studptr -> numclasses;
cin >> studptr -> name.last;

10-17Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

Pointers to Class Objects

class Rectangle {
int width;
int height;

 public:
void setData(int w, int h)
{

width = w;
height = h;
return;

}
Rectangle ()
{

width = 0;
height = 0;

}
Rectangle(int h, int h)
{

setData(w,h);
}

! Usage:
Rectangle box; //a Rectangle object

Rectangle *boxPtr; //a pointer to a Rectangle object

boxPtr = &box; //boxPtr points to box

boxPtr -> setData(15,12); //using the method setData()

! Dynamic Allocation of Class Objects:
boxPtr1 = new Rectangle; //invokes default constructor

boxPtr2 = new Rectangle(10,20) //invokes constructor

delete boxPtr; //invokes desctructor

10-18Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

Selecting Members of Objects

! Sample Structure with Pointer Member:

struct GradeInfo {
string name; //student name
int *testScores; //dynamically allocated
double average; //test average

};

GradeInfo student, *stPtr = &student;

! Example:
//display the value pointed to by the testScores member

cout << *student.testscores;

cout << *stPtr -> testScores; //equivalent

cout << *(*stPtr).testScores; //equivalent

Note: The following are pointers to an int and are equivalent

student.testScotes

stPtr -> testScores

(*stPtr).testScores

10-19Copyright © April 14, 2010 by Chaim Ziegler, Ph.D.

Array of Pointers

! Example:
A case study to demonstrate how an array of pointers can be
used to display the contents of a second array in sorted order,
without sorting the second array.

See sample project

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19

