The this Pointer

® By default, the C+ + compiler provides each member function
of a class with an implicit parameter that points to the object
through which the member function was called. This impliocit
parameter is called “this”.

® Example:
class Example
{

Int X;
public:

Example(int a) //constructor

{

X = a; //Note the implicit use of a pointer to the object

void setValue(int);
int getValue();
void printAddressAndValue();

b

® Member Functions:
void Example::setValue(int x)

{

this->x = x; //Note the explicit use of the this pointer

}

int Example::getValue()

{
return Xx; //INote the implicit use of a pointer to the object
/I calling getValue().
}
void Example::printAddressAndValue()
{

cout < < "The object at address " < < this << " has "
< < "value " << this->x << endl;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '1

® Main() Program lllustrating the this Pointer:

/| This program illustrates the this pointer.
#include <iostream >

#include "ThisExample.h"

using namespace std;

int main()

{
Example ob1(10), ob2(20);

// Print the addresses of the two objects.

cout < < "In main():" << endl;

cout < < "The object at address " << &ob1 << " has "
< < "value " << ob1l.getValue() << endl;

cout < < "The object at address " << &ob2 << " has "
<< "value " < < ob2.getValue() < < endl;

cout < < endl;

// Print the addresses and values from within

// the member function.

cout < < "Calling printAddressAndValue():" < < endl;
ob1.printAddressAndValue();
ob2.printAddressAndValue();

return O;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '2

Constant Member Functions

® A constant member function is one that does not modify the

object through which it was called.

® \When placed right after the parameter list in the definition of
a member function, the const keyword servers as an
indication to the compiler that the member function should

not be allowed to modify its object.

® Example:

class ConstExample

{

int x;
public:
ConstExample(int a) //lconstructor
{
X = a;

void setValuel(int);
int getValue() const;

};

int ConstExample::getValue() const

{

return Xx; /INote: getValue() will not be able to modify x

}

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D.

11-3

Static Members

® Static Member Variables:

- a member variable that is shared by all objects of the class.

objects of the class.

it must be declared inside the class with the keyword static.
it must be defined outside of the class definition.

it can be accessed and modified by all objects of the class.
modifications by one object of the class are visible by all

® Example - Class Specification with Static Member Variables:

#ifndef BUDGET H
#define BUDGET_H

class Budget

{

private:
static double corpBudget;
double divBudget;

public:
Budget()

divBudget = O;
}
void addBudget(double b)

divBudget + = b;
corpBudget + = divBudget;

}
double getDivBudget()

{

return divBudget;

}
double getCorpBudget()

{

return corpBudget;

}
}
#endif

//static member variable

//modifies the static variable

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '4

/I This program demonstrates a static class member variable.
#include <iostream>

#include <iomanip>

#include "budget.h" /| For Budget class declaration
using namespace std;

/| Definition of the static member of the Budget class.
double Budget::corpBudget = O;

int main()

{
const int N_DIVISIONS = 4;

/| Create instances of the Budget class.
Budget divisions[N_DIVISIONS];

/| Get the budget request for each division.
for (int count = O; count < N_DIVISIONS; count+ +)

{
double bud;

cout < < "Enter the budget request for division ";

cout << (count + 1) << "' ";

cin > > bud;

divisions[count].addBudget(bud); //modifies the static variable

}

// Display the budget request for each division.

cout < < setprecision(2);

cout < < showpoint < < fixed;

cout < < "\nHere are the division budget requests:\n";

Eor (int count = O; count < N_DIVISIONS; count+ +)
cout < < "Division " << (count + 1) << "\t$ ";
cout < < divisions[count].getDivBudget() < < endl;

}

// Display the total budget request.
cout < < "Total Budget Requests:\t$ ";
cout < < divisions[0O].getCorpBudget() < < endl;

return O;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '5

® Static Member Functions:
- typically used to access static member variables.
- can be called before any objects of the class are created.
- declared by prefixing its declaration with the keyword static
- can be called independently of class objects by using the
class name (see example).

® Example - Class Specification with Static Member Functions:

#ifndef BUDGET H
#define BUDGET _H

class Budget

{

private:
static double corpBudget; //static member variable
double divBudget;

public:
Budget()

divBudget = O;

void addBudget(double b)

{
divBudget + = b;
corpBudget + = divBudget; /luses the static variable

double getDivBudget()
{

return divBudget;

static double getCorpBudget() //static member function

{

return corpBudget;

}

static void mainOffice(double); //static member function

};
#endif

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '6

® Static Member Function Implementation:
#include "budget2.h"

/| Definition of the static member of Budget class.
double Budget::corpBudget = O;

//***

/| Definition of static member function mainOffice
/I This function adds the main office's budget request to
// the corpBudget variable.

//***

void Budget::mainOffice(double budReq)
{

corpBudget + = budReq; //uses the static variable

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '7

/I This program demonstrates a static class member function.
#include <iostream>

#include <iomanip>

#include "budget2.h" // For Budget class declaration
using namespace std;

int main()

{
const int N_DIVISIONS = 4;

/| Get the budget requests for each division.

cout < < "Enter the main office's budget request: ";
double amount;

cin > > amount;

/| Call the static member function of the Budget class.
Budget::mainOffice(amount); /INote: no instance yet created

/| Create instances of the Budget class.
Budget divisions[N DIVISIONS];
for (int count = O; count < N_DIVISIONS; count + +)

{
double bud;

cout < < "Enter the budget request for division ";
cout << (count + 1) << " ";

cin > > bud;

divisions[count].addBudget(bud);

// Display the budget for each division.

cout < < setprecision(2);

cout< < showpoint < < fixed;

cout < < "\nHere are the division budget requests:\n";

Eor (int count = O; count < N_DIVISIONS; count+ +)
cout < < "\tDivision " < < (count + 1) << "\t$ ";
cout < < divisions[count].getDivBudget() < < endl;

/] Print total budget requests.

cout < < "Total Requests (including main office): $ ";
cout < < Budget::getCorpBudget() < < endl; //Note call
return O;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '8

Friends of Classes

® A friend function is a function that is not a member of a class,
but has access to the private members of the class.

® A friend function can be a stand-alone function or a member
function of another class.

® A friend function is declared a friend with the friend keyword
in the function prototype.

® An entire class can be declared a friend of a class. In this case

all member functions of the friend class have unrestricted
access to the class.

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '9

® Example - Class Specification - Including Friend Function:
#ifndef BUDGET3 H

#define BUDGET3 H

#include "auxil.h" // For Aux class declaration

// Budget class declaration.
class Budget
{
private:
static double corpBudget;
double divBudget;
public:
Budget() { divBudget = O; }
void addBudget(double b)
{ divBudget + = b; corpBudget + = divBudget; }
double getDivBudget() { return divBudget; }
static double getCorpBudget() { return corpBudget; }
static void mainOffice(double);
friend void Aux::addBudget(double); //friend function
/| prototype
};
#endif

® Class Implementation File:
#include "budget3.h"

// Definition of static member.
double Budget::corpBudget = O;

//***

/I Definition of static member function mainOffice
/I This function adds the main office's budget request to
// the corpBudget variable.

//***

void Budget::mainOffice(double budReq)

{
corpBudget + = budReq;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '1 O

® Aux Class Specification:
#ifndef AUXIL H
#define AUXIL H

// Aux class declaration.
class Aux
{
private:
double auxBudget;
public:
Aux()

{
auxBudget = O;

}

void addBudget(double); //this is the friend function

double getDivBudget()

{
return auxBudget;
}
};
#endif

® Aux Implementation File (Contains the Friend Function):
#include "auxil.h"
#include "budget3.h"

//***

/I Definition of member function addBudget

/I This function is declared a friend by the Budget class

// 1t adds the value of argument b to the static corpBudget
/| member variable of the Budget class.

//***

void Aux::addBudget(double b)
{

auxBudget + = b;
Budget::corpBudget + = auxBudget;

}

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '1 1

// This program demonstrates a static class member variable.
#include <iostream >
#include <iomanip >
#include "budget3.h"
using namespace std;

int main()

{
const int N_DIVISIONS = 4;

/| Get the budget requests for the divisions and offices.
cout < < "Enter the main office's budget request: ";
double amount;

cin > > amount;

Budget::mainOffice(amount);

/| Create the division and auxilliary offices.
Budget divisions[N_DIVISIONS];
Aux auxOffices[N_DIVISIONS];

for (int count = O; count < N_DIVISIONS; count+ +)

{
double bud;
cout < < "Enter the budget request for Division ";
cout << (count + 1) << "1 ";
cin > > bud;
divisions[count].addBudget(bud);
cout < < "Enter the budget request for Division ";
cout < < (count + 1) << "'s\nauxiliary office: ";
cin > > bud;

auxOffices[count].addBudget(bud); //uses friend function

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '1 2

// Print the budgets.

cout < < setprecision(2);

cout < < showpoint < < fixed;

cout < < "Here are the division budget requests:\n";
for (int count = O; count < N_DIVISIONS; count+ +)

{

cout
cout
cout
cout
cout
cout

}

<<
<<
<<
<<
<<
<<

"\tDivision " < < (count + 1) << "\t\t\t$ ";
setw(7/);

divisions[count].getDivBudget() < < endl;
"\tAuxiliary Office of Division " < < (count+ 1);
ll\,t$ ";

auxOffices[count].getDivBudget() < < endl;

// Print total requests.

cout < < "\tTotal Requests (including main office): $ ";
cout < < Budget::getCorpBudget() < < endl;

return O;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '1 3

Memberwise Assignment

® The assignment operator, = ,

can be used to assign one

object to another, or to initialize one object with another
object’s data.

® By default, each member of one object is copied to its
counterpart in the other object.

® Example:

DemoClass object1, object2;

object2 = object1; /lassignment

DemoClass object3 = object1; //declare and initialize

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D.

11-14

Copy Constructors

® A copy constructor is a special constructor that is called
whenever a new object is created and initialized with the data
of another object of the same class.

® |f the programmer does not specify a copy constructor for the
class, the compiler calls a default copy constructor which
simply copies all the data of the existing object to the new
object using memberwise assignment.

/I This program demonstrates the operation of the
/| default copy constructor.

#include <iostream>

using namespace std;

class Address

{
private:
string street;
public:
Address() { street = ""; }
Address(string st) { setStreet(st); }
void setStreet(string st) { street = st; }
string getStreet() { return street; }
int main()
// Mary and Joan live at same address.
Address mary("123 Main St");
Address joan = mary; //invokes the default copy constructor
cout << "Mary lives at " < < mary.getStreet() < < endl;
cout << "Joan lives at " < < joan.getStreet() < < endl;
// Now Joan moves out.
joan.setStreet(" 1600 Pennsylvania Ave");
cout << "Now Mary lives at " < < mary.getStreet() < < endl;
cout << "Now Joan lives at " < < joan.getStreet() < < endl;
\ return O;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '1 5

® Default copy constructors can cause difficulties when objects
contain pointers to dynamic memory.

® Default copy constructors can cause “sharing of storage”; that
is, pointers of multiple objects pointing to the same storage.

® Consequently, modification of memory by one object affects
other objects sharing that memory.

® Destructors of one object can delete memory still in use by
another object.

® Example: Class Specification with Pointer to Dynamic Storage
#include <iostream >
using namespace std;

class NumberArray
{
private:
double *aPtr; //Ipointer to dynamic storage
int arraySize;
public:
NumberArray(int size, double value);
/| The destructor is commented out to avoid problems with
/| the default copy constructor.
/********

~NumberArray()

if (arraySize > 0)
delete [] aPtr;

*********/

void print();
void setValue(double value);

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '1 6

® Class Implementation File:
#include <iostream >
#include "NumberArray.h"
using namespace std;

//***

//Constructor allocates an array of the given size and sets all its

// entries to the given value.
//***

NumberArray::NumberArray(int size, double value)

{
arraySize = size;
aPtr = new doublel[arraySize]; /luses dynamic allocation
setValue(value);

//***

//Sets all the entries of the array to the same value.
//***

void NumberArray::setValue(double value)

for(int index = 0O; index < arraySize; index+ +)
aPtr[index] = value;

}

//***************************************

//Prints all the entries of the array.

//***************************************

void NumberArray::print()

for(int index = O; index < arraySize; index + +)
cout < < aPtrl[index] << " ";

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '1 7

/I This program demonstrates the deficiencies of
/] the default copy constructor.

#include <iostream >

#include <iomanip >

#include "NumberArray.h"

using namespace std;

int main()

{

}

/| Create an object.
NumberArray first(3, 10.5);

/| Make a copy of the object.
NumberArray second = first; /linvokes copy constructor

// Display the values of the two objects.

cout < < setprecision(2) < < fixed < < showpoint;
cout < < "Value stored in first object is ";

first.print();

cout < < endl < < "Value stored in second object is ";
second.print();

cout < < endl << "Only the value in second object "

< < "will be changed." < < endl;

/| Now change the value stored in the second object.
second.setValue(20.5);

// Display the values stored in the two objects.
cout < < "Value stored in first object is ";

first.print();

cout < < endl < < "Value stored in second object is ";

second.print();

return O;

® Changing the data in one object changes the data in the other

object because the default copy constructor copies the value
of the pointer in the first object to the pointer in the second
object. Hence, both pointers point to the same object!

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '1 8

Programmer-Defined Copy Constructors

® A programmer defined copy constructor must have a sinilge
parameter that is a reference to the same class.

® The copy constructor uses the data in the object passed to
initialize the object being created.

® The copy constructor can allocate separate memory to hold
the new objects dynamic data. The new object’s pointer will
point to this memory.

® The old object’s data will be copied - not its pointer.

® |t is a good idea to make a copy constructor’'s parameter
constant by specifying the const keyword:

® Example - Class with Programmer-Defined Copy Constructor:
#include <iostream >
using namespace std;

class NumberArray
{
private:
double *aPtr;
int arraySize;
public:
NumberArray(const NumberArray &); //programmer-defined
//copy constructor
NumberArray(int size, double value); //constructor

~NumberArray() //destructor

if (arraySize > 0)
delete [] aPtr;

}

void print();
void setValue(double value);

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '1 9

® Class Implementation File:
#include <iostream>
#include "NumberArray2.h"
using namespace std;

//***

//ICopy constructor allocates a new array and copies into it the

//entries of the array in the other object.
//*-X-***************************************

NumberArray::NumberArray(const NumberArray &obj)

{
arraySize = obj.arraySize;
aPtr = new double[arraySize];
for(int index = 0; index < arraySize; index+ +)
aPtr[index] = obj.aPtr[index];

}

//***

//IConstructor allocates an array of the given size and sets all its

/| entries to the given value.
//***

NumberArray::NumberArray(int size, double value)

{
arraySize = size;
aPtr = new doublelarraySize];
setValue(value);

//**

//Sets all the entries of the array to the same value.

//**

void NumberArray::setValue(double value)

for(int index = O; index < arraySize; index+ +)
aPtr[index] = value;

//**************************************

//Prints all the entries of the array.

//**************************************

void NumberArray::print()

for(int index = O; index < arraySize; index+ +)
cout << aPtrlindex] << " ";

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '20

/| This program demonstrates the use of copy constructors.
#include <iostream >

#include <iomanip >

#include "NumberArray2.h"

using namespace std;

int main()

{
NumberArray first(3, 10.5);

//Make second a copy of first object.
NumberArray second = first; /linvokes copy constructor

/| Display the values of the two objects.
cout < < setprecision(2) < < fixed < < showpoint;
cout < < "Value stored in first object is ";
first.print();

cout < < "\nValue stored in second object is ";

second.print();

cout < < "\nOnly the value in second object will "
< < "be changed.\n";

/INow change value stored in second object.
second.setValue(20.5);

// Display the values stored in the two objects.
cout < < "Value stored in first object is ";

first.print();

cout < < endl < < "Value stored in second object is ";

second.print();

return O;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '21

Operator Overloading

® C+ + allows you to redefine how standard operators
(e.g., =, + , ...) work when used with class objects.

® The name of the function for the overloaded operator is
operator followed by the operator symbol; e.g.,
operator = () //for overloading the = operator
operaor + () //for overloading the + operator

® Operators can be overloaded as either:
- instance member functions
- friend functions

® The overloaded operator must have the same number of
parameters as the standard version.

® A binary operator overloaded as an instance member function
needs only one parameter - the right operand.

class OpClass {
int x;
public:
OpClass operator + (OpClass right);
Y

® The left operand of the overloaded binary operator is the
calling object and is accessed through the this pointer.
OpClass OpClass::operator + (OpClass right)
OpClass sum;

sum.x = this->x + right.x;
return sum;

}
® Sample Usage:
OpClass a,b,s;
s = a.operator+ (b) //invoke as member function
s =a+ b; //more conventional use

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '22

Overloading the Assignment = Operator

® Overloading the assignment operator solves problems with
object assignment when the object contains a pointer to
dynamic memory.

® The assignment operator is most naturally overloaded as an
instance of a member function.

® |t needs to return the value of the assigned object to allow for
cascaded assignments; such as, a = b = c;

® |n general, the assignment operator should be overloaded
whenever a non-default copy constructor is used.

® |n particular, classes allocating dynamic memory to a pointer
member in any constructor should define both a copy
constructor and an overloaded assignment operator.

® Example - Class with Overloaded Assignment Operator:
#include <iostream>
using namespace std;

c{:lass NumberArray
private:
double *aPtr;
int arraySize;
public:
/| Overloaded operator function.
void operator =(const NumberArray &right);

// Constructors and other member functions.

NumberArray(const NumberArray &); //copy constructor
NumberArray(int size, double value); //constructor
~NumberArray() //destructor

if (arraySize > 0O) delete [] aPtr;

void print();
void setValue(double value);

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '23

® Class Implementation File:
#include <iostream >
#include "overload.h"
using namespace std;

//***

/IThe overloaded operator function for assignment.

//***

void NumberArray::operator = (const NumberArray &right)
{
if (arraySize > 0O) delete [] aPtr;
arraySize = right.arraySize;
aPtr = new doublelarraySize];
for (int index = O; index < arraySize; index + +)
aPtr[index] = right.aPtrlindex];

}

//**

//Copy constructor.

//**

NumberArray::NumberArray(const NumberArray &obj)
{
arraySize = obj.arraySize;
aPtr = new doublelarraySize];
for(int index = O; index < arraySize; index + +)
aPtr[index] = obj.aPtrlindex];

}

//**

//Constructor.
//**

NumberArray::NumberArray(int size1, double value)

{
arraySize = sizel;
aPtr = new double[arraySizel;
setValue(value);

}

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '24

/Sets the value stored in all entries of the array.
//***V

oid NumberArray::setValue(double value)

for(int index = O; index < arraySize; index+ +)
aPtr[index] = value;

}

//***************************************

//Print out all entries in the array. *

//***************************************

void NumberArray::print()

for(int index = O; index < arraySize; index + +)
cout < < aPtrlindex] << " ";

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '25

® Sample Program:

/| This program demonstrates overloading of
/| the assignment operator.

#include <iostream >

#include <iomanip >

#include "overload.h"

using namespace std;

int main()

{
NumberArray first(3, 10.5);
NumberArray second(5, 20.5);

// Display the values of the two objects.

cout < < setprecision(2) < < fixed < < showpoint;
cout < < "First object's data is ";

first.print();

cout < < endl < < "Second object's data is ";

second.print();

/I Call the overloaded operator.
cout < < "\nNow we will assign the second object "
< < "to the first." < < endl;
first = second; /linvokes overloaded = operator

// Display the new values of the two objects.
cout < < "First object's data is ";

first.print();

cout << endl << "The second object's data is ";

second.print();

return O;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '26

General Issues with Operator Overloading

® |f desired, you can change the entire meaning of an operator:

class Weird {
int value;
public:
Weird(int v)
{
value = v;
}
void operator = (const Weird &right)
{
cout < < right.value < < endl;
}
Y
® Now, consider the following code:
Weird a(5), b(b); //luses the constructor
a=>b; //luses overloaded assignment operator

Although the statement a = b looks like an assignment
statement, it actually causes the contents of b’s “value” to be
displayed on the screen.

® \When overloading an operator, you can not change the
number of operands.

® Most operators can be overloaded.

® You can not overload the following operators:
?2: . H sizeof

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '27

Overloading Math and Relational Operators
® Many classes would benefit from overloaded math operators.

® Overloading the prefix + + operator:
- Since unary operators only affect the object making the
operator function call, there is no need for a parameter
(i.e., the member function will have a void parameter).

® Overloading the postfix + + operator:

- The member function will have a dummy parameter. When
the C+ + compiler sees the dummy parameter in an
operator function, it knows that the function is designed to
be used in postfix mode.

- The member function must use a temporary local object
which is initialized to the value of the object making the
function call.

® Overloading Relational Operators:

- Relational operators can be overloaded so that objects of
classes can be compared using regular relational
expressions.

- Overloaded relational operators should return a bool value.

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '28

® Example: Class Specification File
#ifndef FEETINCHES H
#define FEETINCHES H

/I A class to hold distances or measurements expressed
/] in feet and inches.
class Feetlnches {
private:
int feet;
int inches;
void simplify();
public:
Feetinches(int f = O, inti = 0)

feet = f;
inches = i;
simplify();

void setDatal(int f, int i)

feet = f;
inches = i;
simplify();
}
int getFeet()
{
return feet;
}
int getlnchesl)
{
return inches;
}

// overloaded arithmetic and boolean operators.
Feetlnches operator + (const Feetlnches &) const;
Feetlnches operator - (const Feetinches &) const;
Feetlnches operator + +();
Feetlnches operator + + (int);
bool operator > (const Feetlnches &) const;
bool operator < (const Feetlnches &) const;
\ bool operator = =(const Feetlnches &) const;
#endif

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '29

® Example: Class Implementation File
#include "feetinch4.h"

//***

/| Definition of member function simplify. This function checks for
// values in the inches member greater than 12 or less than O.

/] If such a value is found, the numbers in feet and inches are

/! adjusted to conform to a standard feet and inches expression.

/| Thus, 3 feet 14 inches would be adjusted to 4 feet 2 inches and
/| 5 feet -2 inches would be adjusted to 4 feet 10 inches.

Feetlnches::simplify()

{
inches = 12*feet + inches;
feet = inches / 12;
inches = inches % 12;

}

//**

/| Overloaded binary + operator.

//**

Feetinches Feetinches::operator + (const Feetlnches &right) const

{

Feetlnches temp;

temp.inches = inches + right.inches;
temp.feet = feet + right.feet;
temp.simplify();

return temp;

}

//**

/| Overloaded binary - operator.

//**

Feetlnches Feetlnches::operator-(const Feetlnches &right) const

{

Feetinches temp;

temp.inches = inches - right.inches;
temp.feet = feet - right.feet;
temp.simplify();

return temp;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '30

//***

// Overloaded prefix + + operator. Causes the

// inched member to be incremented. Returns the

// incremented object.
//***

Feetinches Feetlnches::operator + + ()

+ +inches;
simplify();
return *this;

}

//***

// Overloaded postfix + + operator. Causes the

// inches member to be incremented. Returns the

// value of the object before the increment.
//***

Feetlnches Feetlnches::operator + +(int) //intis a dummy parameter

{

Feetlnches temp(feet, inches);
inches + +;

simplify();
return temp;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '31

//***

// Overloaded > operator. Returns true if the
/| current object is set to a value greater than
// that of right.

//***

bool Feetinches::operator > (const Feetlnches &right) const

if (feet > right.feet)
return true;

if (feet = = right.feet && inches > right.inches)
return true;

return false;

}

//***

// Overloaded < operator. Returns true if the
/] current object is set to a value less than
/] that of right.

//***

bool Feetinches::operator <(const Feetlnches &right) const

{

return right > *this;

//***

// Overloaded = = operator. Returns true if the
/| current object is set to a value equal to that
/] of right.
//***
bool Feetlnches::operator = =(const Feetlnches &right) const

if (feet = = right.feet && inches = = right.inches)

return true;
else

return false;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '32

® Sample Program:

/I This program demonstrates the Feetinches class's
/I overloaded math and relational operators.
#include <iostream>

#include "feetinch4.h"

using namespace std;

int main()

{
Feetlnches first, second, third;
int f, i;

//Demonstrating overload + and - operators

cout < < "Demonstrating overlaoded + and - operators.\n";
cout < < "Enter a distance in feet and inches: ";

cin >>f>>1i;

first.setDatalf(f, i);

cout < < "Enter another distance in feet and inches: ";
cin >>f>>1;

second.setDatalf, i);

third = first + second;

cout << "first + second = ";

cout < < third.getFeet() << " feet, ";

cout < < third.getinches() < < " inches.\n";

third = first - second;

cout < < "first - second = ";

cout < < third.getFeet() << " feet, ";

cout < < third.getlnches() < < " inches.\n";

cout << endl;

//Demonstrating overload prefix + + operator
cout < < "Demonstrating overlaoded prefix + + operator.\n";
Eor (int count = O; count < 12; count+ +)

first = + +second;

cout << "first: " << first.getFeet() << " feet, ";

cout < < first.getlnches() < < " inches. ";

cout << "second: " << second.getFeet() << " feet, ";

cout < < second.getlnches() << " inches.\n";

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '33

//Demonstrating overload postfix + + operator
cout < < "\nDemonstrating overloaded postfix + + operator.\n";
for (int count = O; count < 12; count+ +)

{

first = second + +;

cout << "first: " << first.getFeet() << " feet, ";

cout < < first.getlnches() < < " inches. ";

cout << "second: " << second.getFeet() << " feet, ";
} cout < < second.getlnches() << " inches.\n";

cout << endl;

//Demonstrating overload relational operators
cout < < "Demonstrating overlaoded relational operators.\n";
cout < < "Enter a distance in feet and inches: ";
cin >>f>>1i;
first.setDatalf(f, i);
cout < < "Enter another distance in feet and inches: ";
cin >>f >>i;
second.setDatalf, i);
if (first = = second)
cout < < "First is equal to second.\n";
if (first > second)
cout << "First is greater than second.\n";
if (first < second)
cout < < "First is less than second.\n";

return O;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '34

Overloading The < < and > > Operators

® cout and cin are respective members of the ostream and
istream classes defined in the C + + runtime library. (The cout
and cin objects are instances of ostream and istream.

® The overloaded << (> >) function, will require two input
parameters - a reference to the actual ostream (istream) object
on the left side of the < < (> >) operator and a reference to
the object on the right side of the < < (> >) operator.

® The overloaded < < (> >) function, returns a reference to the
actual ostream (istream) object so as to allow for a “chained”
operation; such as,

cout < < objectl << “ " << object2 << endl;

cin > > objectl > > object2 > > object3;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '35

® Example: Class Specification File
#ifndef FEETINCHES H
#define FEETINCHES H

#include <iostream >
using namespace std;

class Feetlnches

{
private:
int feet;
int inches;
void simplify();
public:
Feetlnches(int f = O, inti = 0)
{ feet = f; inches = i; simplify(); }
void setData(int f, int i)
{ feet = f; inches = i; simplify(); }
int getFeet()
{ return feet; }
int getinchesl)
{ return inches; }
/l Overloaded arithmetic, boolean, and io operators.
Feetlnches operator + (const Feetlnches &) const;
Feetlnches operator - (const Feetlnches &) const;
Feetlnches operator+ +();
Feetlnches operator + + (int);
bool operator > (const Feetlnches &) const;
bool operator<(const Feetlnches &) const;
bool operator = = (const Feetlnches &) const;
friend ostream &operator< < (ostream &, Feetlnches &);
friend istream &operator> > (istream &, Feetlnches &);
};
#endif

® Note: The friend designation gives the operator functions
direct access to the class’s private members.

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '36

® Example: Class Implementation File for < < and > >

//**

/| Overloaded < < operator. Gives cout the ability to
/] directly display Feetlnches objects.

stream &operator< <(ostream &strm, Feetlnches &obj)

strm < < obj.feet << " feet, " << obj.inches << " inches";
return strm;

}

//**

/| Overloaded > > operator. Gives cin the ability to

/] store user input directly into Feetlnches objects.
//**

istream &operator> > (istream &strm, Feetinches &obj)

{

strm > > obj.feet > > obj.inches;
return strm;

}

® Sample Program:

/I This program demonstrates the < < and > > operators,
// overloaded to work with the Feetinches class.

#include <iostream >

#include "feetinchb.h"

using namespace std;

int main()

{

Feetlnches first, second;

cout < < "Enter a distance in feet and inches:\n";

cin > > first;

cout < < "Enter another distance in feet and inches:\n";
cin > > second;

cout < < "The values you entered are:\n";

cout < < first << "and " << second << endl;
return O;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '37

Overloading The [] Operator

® Overloading the [] operator gives you the ability to create
classes with array-like behavior. (For example, the string class
overloads the [] operator so that you can access individual
characters stored in string class objects.)

® Can be used to provide bounds checking.

® The overloaded operator [] function can only have a single
input parameter.

® The overloaded operator [] function must return a reference to
an object, not an object itself.

® Example: Class Specification File
#ifndef INTARRAY _H
#define INTARRAY H
#include <iostream >
using namespace std;

class IntArray

{
private:
int *aptr;
int arraySize;
void subError(); /| Handles subscripts out of range
public:
IntArray(int); // Constructor
IntArray(const IntArray &); // Copy constructor
~IntArray(); // Destructor
int size()
{
return arraySize;
}
int &operator[l(int); /I Overloaded [] operator
};
#endif

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '38

® Example: Class Implementation File
#include "intarray.h"

//***

/| Constructor for IntArray class. Sets the size of

// the array and allocates memory for it.
//***

IntArray::IntArray(int s)

{
arraySize = s;
aptr = new int [s];
for (int count = O; count < arraySize; count+ +)
*(aptr + count) = O;

}

//***

/| Copy constructor for IntArray class.

//***

IntArray::IntArray(const IntArray &obj)

{
arraySize = obj.arraySize;
aptr = new int [arraySize];
for(int count = O; count < arraySize; count+ +)
*(aptr + count) = *(obj.aptr + count);

}

//***

/| Destructor for IntArray class.
//***

IntArray:: ~IntArray()

if (arraySize > 0)
delete [] aptr;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '39

//***

// subError function. Displays an error message and
/| exits the program when a subscript is out of range.

//***

void IntArray::subError()

{

cout < < "ERROR: Subscript out of range.\n";
exit(0);

}

//***

// Overloaded [] operator. The argument is a subscript
// This function returns a reference to the element
// in the array indexed by the subscript.

//***

int &IntArray::operator[l(int sub)

if (sub < O || sub > = arraySize)
subError();
return aptr[subl];

}

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '40

® Sample Program:

/| This program demonstrates a class that behaves like an array.
#include <iostream >

#include "intarray.h"

using namespace std;

int main()

{

IntArray table(10);

/| Store values in the array.
for (int x = 0; x < table.size(); x+ +)
table[x] = (x * 2); //table[x] is a reference to an int

// Display the values in the array.

for (int x = 0; x < table.size(); x+ +)
cout < < table[x] << " ";

cout < < endl;

/l Use the built-in + operator on array elements.
for (int x = 0; x < table.size(); x+ +)
table[x] = table[x] + b;

// Display the values in the array.

for (int x = 0; x < table.size(); x+ +)
cout < < table[x] << " ";

cout < < endl;

// Use the built-in + + operator on array elements.
for (int x = 0; x < table.size(); x+ +)
table[x] + +;

// Display the values in the array.
for (int x = 0; x < table.size(); x+ +)
cout < < table[x] << " ";

cout < < endl;
return O;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '41

Type Conversion Operators

® Conversion Operators are member functions that tell the
compiler how to convert an object of the class type to a value
of another type.

® The conversion information provided by a conversion operator
is automatically used by the compiler in assignments,
initializations, and parameter passing.

® A conversion operator must be a member function of the class
you are converting from.

® The name of the operator is the name of the type you are
converting to.

® A conversion operator does not specify a return type.

® Example - Convert from a class IntClass object to an integer:
class IntClass

{
int value;
public:
IntClass(int a = 0) //constructor

{

value = a;

}

operator int() //lconversion operator

{

return value;

}
}

® Sample Usage - Automatic Conversion During Assignment:

IntClass obj(15);
int i;

i = obj; // automatic conversion
cout < < i; // prints 15

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '4‘2

Convert Constructors

® Convert Constructors provide a method to convert a value of
a given data type to an object of the class.

® A convert constructor takes a single parameter of a type other
than its class type.

® Example - Convert from an integer to a class IntClass object:
class IntClass {
int value;
public:
IntClass(int intValue) //lconvert constructor

{

value = intValue;

int getValue()

{
return value;
}
};

® Note: The string class has a convert constructor that converts
from C-strings:
class string {
public:
string(char *); //lconvert constructor

}

® Convert constructors are automatically invoked by the compiler to
create an object from the value passed as a parameter.
string s(“hello!”); //lconvert C-string

® C+ + allows convert constructors to be invoked with
assignment-like notation:
string s = “hello!”; //lconvert C-string

® Convert constructors allow functions that take the class type
as a parameter to take parameters of other types.

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '43

Object Composition (The Has-A Relation)

® Object composition occurs when a class contains an object of
another class (i.e., the 'has-a’ relation).

® Uses the same notation as for nested structures.

® See sample program.

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '44

Inheritance (The Is-A Relation)

® Inheritance is a way of creating a new class by starting with
an existing class and adding new members.

® The new class can replace or extend the functionality of the
existing class.

® Inheritance models the 'is-a' relationship between classes

® The existing class is called the base class (or parent class, or
superclass).

® The new class is called the derived class (or child class, or
subclass).

® To define a class by inheritance, we need to specify the base
class plus the additional members that the derived class adds
to the base class.

® The derived class inherits all the characteristics of the base
class (e.g., the member variables and member functions of the
base class. Note: private members of the base class are part
of the derived class but can not be accessed directly by the
derived class).

® The derived class definition will contain the base class access
specification which affects how members of the base class
will be accessed by the member functions of the derived
class, and by code outside the two classes.

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '45

® Example - Class Specification File with Inheritance:

#include <string>
using namespace std;

enum Discipline {
ARCHEOLOGY, BIOLOGY, COMPUTER _SCIENCE

b

enum Classification {
FRESHMAN, SOPHOMORE, JUNIOR, SENIOR

b

//Base Class:
class Person
{
private:
string name;
public:
Person()

{

setName("");

}

Person(string pName)

{

setName(pName);

}

void setName(string pName)

{

name = pName;

}

string getName()

return name;

}
b

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D.

11-46

//IDerived Class

class Student : public Person /INote the single :

{

private:
Discipline major;
Person *advisor;
public:
void setMajor(Discipline d)

{
}

Discipline getMajor()

major = d;

return major;

void setAdvisor(Person *p)

{
advisor = p;
}
Person *getAdvisor()
{
return advisor;
}

b

//IDerived Class
class Faculty : public Person
{
private:
Discipline department;
public:
void setDepartment(Discipline d)

{
}

Discipline getDepartment()

department = d;

return department;

}
b

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D.

11-47

® Sample Program:

/I This program demonstrates the creation and use
/| of objects of derived classes.

#include <iostream >

#include "inheritance.h"

using namespace std;

/| These arrays of string are used to print the
/| enumerated types.
const string dName[] = {
"Archeology", "Biology", "Computer Science"
};

const string cNamel[] = {
"Freshman", "Sophomore", "Junior", "Senior"
¥

int main()

{

/| Create a Faculty object.
Faculty prof;

// Use a Person member function.
prof.setName("Indiana Jones");

// Use a Faculty member function.
prof.setDepartment(ARCHEOLOGY);

cout < < "Professor " < < prof.getName()
< < " teaches in the " < < "Department of ";

/| Get department as an enumerated type.
Discipline dept = prof.getDepartment();

// Print out the department in string form.
cout < < dNamel[dept] < < endl;

return O;

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D.

11-48

Protected Members and Class Access

® Protected Members of a base class are like private members
except that they can be accessed by derived classes.

® Base Class Access Specification determines how private,
protected, and public base class members are accessed when
they are inherited by the derived class (Note: Member Access
Specification determines general (global) access to member
defined in the class.):

® C + + supports three inheritance modes, also called base class
access modes:
- public inheritance
class Child : public Parent { };
- private base class members are inaccessible to the
derived class
- protected base class members are protected members of
the derived class
- public base class members are public members of the
derived class
- protected inheritance
class Child : protected Parent{ };
- private base class members are inaccessible to the
derived class
- protected base class members are protected members of
the derived class
- public base class members are protected members of the
derived class
- private inheritance
class Child : private Parent{ };
- private base class members are inaccessible to the
derived class
- protected base class members are private members of the
derived class
- public base class members are private members of the
derived class

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '49

Constructors, Destructors, and Inheritance

® By inheriting every member of the base class, a derived class
object contains a base class object.

® The derived class constructor can specify which base class
constructor should be used to initialize the base class object.

® \When an object of a derived class is created, the base class’s
constructor is called first, followed by the derived class’s
constructor.

® \When an object of a derived class is destroyed, the derived

class’s destructor is called first, followed by the destructor of
the base class.

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '50

® Demo Program:

/I This program demonstrates the order in which base and
/] derived class constructors and destructors are called.

/| For the sake of simplicity, all the class declarations

/I are in this file.

#include <iostream >

using namespace std;

// Base class.
class BaseDemo

{
public:
BaseDemo() // Constructor
{ cout < < "This is the BaseDemo constructor.\n"; }
~BaseDemo() // Destructor
{ cout < < "This is the BaseDemo destructor.\n"; }
¥

// Derived class.
class DeriDemo : public BaseDemo

{
public:
DeriDemo() //Constructor
{ cout < < "This is the DeriDemo constructor.\n"; }
~DeriDemo() // Destructor
{ cout < < "This is the DeriDemo destructor.\n"; }
};
int main()
{
cout < < "We will now create a DeriDemo object." < < endl;
DeriDemo object;
cout < < endl;
cout < < "The program is now going to end." < < endl;
return O;
}

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '51

Passing Arguments to Base Class Constructors
® Allows for selection between multiple base class constructors.

® Can specify arguments to the base constructor on the derived
constructor heading.

® Can also be done with inline constructors.
® Must be done if base class has no default constructor.
® [t is important to remember that the arguments to the base

class constructor must be specified in the definition

(implementation) of the derived class, rather than in its
declaration.

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '52

Overriding Base Class Functions

® A derived class can override a member function of its base
class by defining a derived class member function with the
same name and parameter list.

® Typically used to replace a function in the base class with
different actions in the derived class.

® Not the same as overloading. With overloading, the parameter
lists must be different

® \When a function is overridden, all objects of the derived class
use the overriding function.

® |f it is necessary to also access the overridden version of the

function, it can be done using the scope resolution operator

with the name of the base class and the name of the function:
Student::getName();

Copyright © May 6, 2010 by Chaim Ziegler, Ph.D. 1 1 '53

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53

