
16-1Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

Exceptions

! Exceptions are used to signal error or unexpected events that
occur while a program is running.

! An exception is a condition that occurs at execution time and
makes normal continuation of the program impossible.

! When an exception occurs, the program must either terminate
or jump to special code for handling the exception.

! The special code for handling the exception is called an
exception handler.

! Example: unreliable division function:

double divide(double numerator, double denominator)
{

if (denominator == 0)
{

cout << “Error: Can not divide by zero!” << endl;
return 0; //this is a problematic error signal

}
else

return (numerator/denominator);
}

! Note: 0 is problematic as an error signal since 0 is a valid
result of a division operation.

! Exceptions - Key Words:
- throw

followed by an argument, is used to signal an exception
- try

followed by a block { }, is used to invoke code that throws
an exception.

- catch
followed by a block { }, is used to process exceptions
thrown in the preceding try block. catch takes a parameter
that matches the type thrown.

16-2Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

! Sample Program:

// This program illustrates exception handling.
#include <iostream>
using namespace std;

// Function prototype
double divide(double, double);

int main()
{

int num1, num2;
double quotient;

cout << "Enter two numbers: ";
cin >> num1 >> num2;
try
{

quotient = divide(num1, num2);
cout << "The quotient is " << quotient << endl;

}
catch (char *exceptionString)
{

cout << exceptionString;
}

cout << "End of the program.\n";
return 0;

}

double divide(double numerator, double denominator)
{
 static char *str = "ERROR: Cannot divide by zero.\n";

if (denominator == 0)
throw str;

else
return (numerator/denominator);

}

16-3Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

Object Oriented Exception Handling with Classes

Throwing an Exception Class

! Instead of throwing a character string or some other value of
a primitive type, the following program throws an exception
class.

! The throw statement causes an instance of the exception
class to be created. All that remains is for the catch block to
handle the exception.

! Class Definition File:
class IntRange
{
 private:

int input; // For user input
int lower; // Lower limit of range
int upper; // Upper limit of range

 public:
// Exception class
class OutOfRange

{ }; // Empty class declaration

// Member functions
IntRange(int low, int high) // Constructor
{

lower = low;
upper = high;

}

int getInput()
{
 cin >> input;
 if (input < lower || input > upper)
 throw OutOfRange(); //throw an exception class
 return input;
}

};
#endif

16-4Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

! Sample Program that Throws an Exception Class:

// This program demonstrates the use of object-oriented
// exception handling.
#include <iostream>
#include "IntRange.h"
using namespace std;

int main()
{

IntRange range(5, 10);
int userValue;

cout << "Enter a value in the range 5 - 10: ";
try
{

userValue = range.getInput();
cout << "You entered " << userValue << endl;

}
catch (IntRange::OutOfRange)
{

cout << "That value is out of range.\n";
}

cout << "End of the program.\n";
return 0;

}

16-5Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

Multiple Exceptions

! In many cases a program will need to test for several different
types of errors and signal which one has occurred.

! C++ allows you to throw and catch multiple exceptions. The only
requirement is that each different exception be of a different type.

#ifndef INTRANGE2_H
#define INTRANGE2_H

#include <iostream>
using namespace std;

class IntRange2
{
 private:

int input; // For user input
int lower; // Lower limit of range
int upper; // Upper limit of range

 public:
// Exception classes.
class TooLow

{ };
class TooHigh

{ };
// Member functions.
IntRange2(int low, int high) // Constructor
{

 lower = low;
 upper = high;

}
int getInput()
{

cin >> input;
if (input < lower)

throw TooLow();
else if (input > upper)

throw TooHigh();
return input;

}
};
#endif

16-6Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

! Sample Program that Throws Multiple Exceptions:

// This program demonstrates the IntRange2 class.
#include <iostream>
#include "IntRange2.h"
using namespace std;

int main()
{

IntRange2 range(5, 10);
int userValue;

cout << "Enter a value in the range 5 - 10: ";
try
{

userValue = range.getInput();
cout << "You entered " << userValue << endl;

}
catch (IntRange2::TooLow)
{

cout << "That value is too low.\n";
}
catch (IntRange2::TooHigh)
{

cout << "That value is too high.\n";
}

cout << "End of the program.\n";
return 0;

}

16-7Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

Extracting Information from the Exception Class

! Sometimes we may want an exception to pass information back
to the exception handler. This can be accomplished by giving the
exception class member variables in which the information can be
stored.

#ifndef INTRANGE3_H
#define INTRANGE3_H

#include <iostream>
using namespace std;

class IntRange3
{
 private:

int input; // For user input
int lower; // Lower limit of range
int upper; // Upper limit of range

 public:
// Exception class.
class OutOfRange
{
 public:

int value;
OutOfRange(int i) // Exception class constructor
{ value = i; }

};
// Member functions.
IntRange3(int low, int high) // Constructor
{

lower = low;
upper = high;

}
int getInput()
{

cin >> input;
if (input < lower || input > upper)

throw OutOfRange(input); //pass info to the handler
 return input;
}

};
#endif

16-8Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

! Sample Program that Passes Info to the Exception Handler:

// This program demonstrates the IntRange3 class.
#include <iostream>
#include "IntRange3.h"
using namespace std;

int main()
{

IntRange3 range(5, 10);
int userValue;

cout << "Enter a value in the range 5 - 10: ";
try
{

userValue = range.getInput();
cout << "You entered " << userValue << endl;

}
catch (IntRange3::OutOfRange ex)
{

cout << "That value " << ex.value
<< " is out of range.\n";

}

cout << "End of the program.\n";
return 0;

}

16-9Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

Unwinding the Stack

! If an exception is thrown in a try block that has a catch block
capable of handling the exception, control transfers from the
throw point to the catch block. Assuming the catch block
runs to completion, execution will continue at the first
statement after the sequence of catch blocks attached to the
try.

! If the function does not contain a catch block capable of
handling the exception, control passes out of the function,
and the exception is automatically re-thrown at the point of
the call in the calling function. (See an example of a nested
try block on the next page.)

! By this process, an exception can propagate backwards along
the chain of function calls until the exception is thrown out of
a try block that has a catch block than can handle it.

! If no such try block is ever found, the exception will eventually
be thrown out of the main function, causing the program to
be terminated.

! This process of propagating un-caught exceptions from a
function to its caller is called unwinding the stack of function
calls.

16-10Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

Re-throwing an Exception

! Example of Nested try blocks:
// This program demonstrates a nested try block.
#include <iostream>
using namespace std;

int main()
{

try
{

doSomething();
}
catch (exception1)
{

code to handle exception1
}
catch (exception2)
{

code to handle exception2
}
return 0;

}

void doSomething()
{

try
{

code that can throw exceptions 1, 2 and 3
exception2 will be handled by main()

}
catch (exception1)
{

throw; //re-throw exception1
}
catch (exception3)
{

code to handle exception3
}

}

16-11Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

Function Templates

! A function template is a generic function that can work with
different data types.

! The programmer writes the specifications of the functions, but
substitues parameters for data types.

! When the compiler encounters a call to the function, it
generates code to handle the specific data type(s).

! Function templates are better than overloaded functions, since
the code defining the algorithm of the function is only written
once.

! Sample code:
int square(int number)
{

return (number * number);
}
double square(double number)
{

return (number * number);
}

! Function Template:
template <class T> //template prefix
T square(T number) //T is a generic data type
{

return (number * number);
}

! A template prefix begins with the keyword template, followed
by angle brackets containing one or more generic data types
(separated bo commas) used in the template. After this, the
function definition is written as usual except the generic type
parameters are used instead of the actual data type names.

16-12Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

! Sample Program:

// This program uses a function template.
#include <iostream>
#include <iomanip>
using namespace std;

// Template definition for square function.
template <class T>
T square(T number)
{

return (number * number);
}

int main()
{

cout << setprecision(5);

// Get an integer and compute its square.
cout << "Enter an integer: ";
int iValue;
cin >> iValue;

// The compiler creates int square(int) at the first
// occurrence of a call to square with an int argument.
cout << "The square is " << square(iValue) << endl;

// Get a double and compute its square.
cout << "\nEnter a double: ";
double dValue;
cin >> dValue;

// The compiler creates double square(double)at the first
// occurrence of a call to square with a double argument.
cout << "The square is " << square(dValue) << endl;

return 0;
}

16-13Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

The swap Function Template

! A generic library swap function template exists and can be
invoked by using #include <algorithm>.

! Sample Program:
#include <iostream>
#include <string>
#include <algorithm> //needed for swap
using namespace std;

int main()
{

// Get and swap two chars.
char firstChar, secondChar;

 cout << "Enter two characters: ";
 cin >> firstChar >> secondChar;
 swap(firstChar, secondChar);

cout << firstChar << " " << secondChar << endl;

// Get and swap two ints.
int firstInt, secondInt;
cout << "Enter two integers: ";
cin >> firstInt >> secondInt;
swap(firstInt, secondInt);
cout << firstInt << " " << secondInt << endl;

// Get and swap two strings.
string firstString, secondString;
cout << "Enter two strings: ";
cin >> firstString >> secondString;
swap(firstString, secondString);
cout << firstString << " " << secondString << endl;

return 0;
}

16-14Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

Using Operators in Function Templates

! Always remember that templates will only work with types
that support the operations used by the template.

! Sample Program:
// This program illustrates the use of function templates.
#include <string>
#include <iostream>
using namespace std;

// Template for minimum of an array.
template <class T>
T minimum(T arr[], int size)
{

T smallest = arr[0];
for (int k = 1; k < size; k++)
{

if (arr[k] < smallest)
smallest = arr[k];

}
return smallest;

}

int main()
{

// The compiler creates int minimum(int [], int)
// when you pass an array of int.
int arr1[] = {40, 20, 35};
cout << "The minimum number is " << minimum(arr1,3)

<< endl;

// The compiler creates string minimum(string [], int)
// when you pass an array of string.
string arr2[] = {"Zoe", "Snoopy", "Bob", "Waldorf"};
cout << "The minimum string is " << minimum(arr2, 4)

<< endl;

return 0;
}

16-15Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

Function Templates with Multiple Types

! Sample Program:
// This program illustrates the use of function templates
// with multiple types.
#include <iostream>
#include <string>
using namespace std;

//template function
template <class T1, class T2, class T3>
void echoAndReverse(T1 a1, T2 a2, T3 a3)
{

cout << "Original order is: "
<< a1 << " " << a2 << " " << a3 << endl;

cout << "Reversed order is: "
<< a3 << " " << a2 << " " << a1 << endl;

}

int main()
{

echoAndReverse("Computer", 'A', 18);

echoAndReverse("One", 4, "All");

return 0;
}

16-16Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

Overloading Function Templates

! Function templates can be overloaded.

! Sample Program:
// This program demonstrates an overloaded function template.
#include <iostream>
using namespace std;

template <class T>
T sum(T val1, T val2)
{

return val1 + val2;
}

template <class T>
T sum(T val1, T val2, T val3)
{

return val1 + val2 + val3;
}

int main()
{

double num1, num2, num3;

cout << "Enter two values: ";
cin >> num1 >> num2;
cout << "Their sum is " << sum(num1, num2) << endl;

cout << "Enter three values: ";
cin >> num1 >> num2 >> num3;
cout << "Their sum is " << sum(num1, num2, num3) <<endl;

return 0;
}

16-17Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

Notes on Function Templates

! A function template is a pattern (or prototype).

! No actual code is generated by the compiler until the function
named in the template is called in the code.

! A function template uses no memory.

! When passing a class object to a function template, ensure
that all operators referred to in the template are defined or
overloaded in the class definition.

! All data types specified in a template prefix must be used in
the template definition.

! Function calls must pass parameters for all data types
specified in the template prefix.

! Function templates can be overloaded – need different
parameter lists.

! Like regular functions, function templates must be defined
before being called.

! Templates are often appropriate for multiple functions that
perform the same task with different parameter data types

! Develop function using usual data types first, then convert to
a template:

- add template prefix,
- convert data type names in the function to a type

parameter (i.e., a T type) in the template.

16-18Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

Class Templates

! Templates can be used to create generic classes and abstract
data types.

! Unlike functions, a class template is instantiated by supplying
the type name (int, float, string, etc.) at object definition.

! Sample Class Template:
template <class T>
class Joiner
{
 public:

T combine(T x, T y)
{

return (x+y);
}

};

! Example: Using Class Template:
Joiner<double> jd; //instantiates an object of type double

Joiner<string> sd; //instantiates an object of type string

cout << jd.combine(3.0, 5.0); //prints: 8.0

cout << sd.combine("Hi ", "Ho"); //prints: Hi Ho

16-19Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

Class Templates and Inheritance

! Templates can be combined with inheritance.

! You can derive:
- Non template classes from a template class: instantiate the

base class template and then inherit from it.
- A template class from a template class
- Other combinations possible

16-20Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

The Standard Template Library (STL)

! The Standard Template Library (STL) is a library containing
templates for frequently used data structures and algorithms.

! The most important data structires included are containers and
iterators.

! A container is a class that stores data and organizes it in some
fashion.

! An iterator is an object that works like a pointer and allows
access to items stored in containers.

! Sequence Containers:
Organize and access data sequentially, as in an array:

- vector
A sequence of items implemented as an array. Items
can be efficiently added and removed from the vector at
its end.

- deque
A sequence of items that has a front and a back. Items
can be efficiently added and removed from the ends.

- list
A sequence of item that allows quick additions and
removals from any position.

! Associative Containers:
Use keys to allow data elements to be quickly accessed:

- set
Stores a set of keys. No duplicate values allowed.

- multiset
Stores a set of keys. Duplicate values allowed.

- map
Maps a set of keys to data elements. Each key is
associated with a unique data element. No duplicates.

- multimap
Maps a set of keys to data elements. The same key may
be associated with multiple values.

16-21Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

! Iterators:
Iterators are a generalization of pointers used to access
information in containers

! Iterator Types:
- forward

can only move forward in a container (uses ++ operator)
- bidirectional

can only move forward or backward in a container (uses
++ and -- operators)

- random-access
can move forward and backward, and can jump to a
specific data element in a container.

- input
can be used with cin to read information from an input
device or a file.

- output
can be used with cout to write information to an output
device or a file.

// This program is a simple demonstration of the vector STL template.
#include <iostream>
#include <vector> // needed for vectors (see text for details)
using namespace std;

int main()
{

vector<int> vect; // Create a vector of int

for (int x = 0; x < 10; x++)
vect.push_back(x*x);

//print everything using iterators.
vector<int>::iterator iter = vect.begin();
while (iter != vect.end())
{

cout << *iter << " ";
iter ++;

}
return 0;

}

16-22Copyright © April 29, 2010 by Chaim Ziegler, Ph.D.

STL Algorithms

! STL contains algorithms implemented as function templates to
perform operations on containers.

! Requires algorithm header file (#include <algorithm>)

! Collection of algorithms includes (see text for details):
- boolVar = binary_search(iter1, iter2, value)

Performs a binary search for an object (value) in a
container in a range of elements iter1 to iter2. Returns true
if found; otherwise returns fasle.

- number = count(iter1, iter2, value)
Returns the number of times a value appears in a container
in the range of elements iter1 to iter2.

- for_each(iter1, iter2, func)
Executes a specified function (func) for each element in a
container in the range of elements iter1 to iter2.

- iter3= find(iter1, iter2, value)
Finds the first object in a container that matches a value.
If value is found, the function eturns an iterator to it;
otherwise, it returns the iterator iter2.

- iter3 = max_element(iter1, iter2)
Finds max element in the portion of a container delimited
by the range of elements iter1 to iter2. Returns an iterator.

- iter3 = min_element(iter1, iter2)
Finds min element in the portion of a container delimited by
the range of elements iter1 to iter2. Returns an iterator.

- random_shuffle(iter1, iter2)
Randomly reorders the portion of the container in the given
range of elements iter1 to iter2. Returns an iterator

- sort(iter1, iter2)
Sorts into ascending order the portion of the container
specified by the given range of elements iter1 to iter2.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22

