
UNIX-1Copyright © April 19, 2010 by Chaim Ziegler, Ph.D.

UNIX

! UNIX is an operating system (OS) for multi-user systems.

! UNIX was originally develop at Bell Labs in 1969 by Thompson
and Ritchie.

! UNIX is an open system. (No one company owns it.)

! UNIX is portable - it can be installed on different types of
machines.

! Main Components of the UNIX OS:
- Kernel:

Master control program of the computer. In charge of
managing resources and multitasking.

- File System:
Data are stored in files, which are organized in directories.

- Shell:
Accepts user commands and passes them on to the kernel.

- Utilities:
These are the commands that UNIX understands.

%date
%who
%whoami
%mail
%pine (see chapter 20)
%man

! In summary, you type a utility into the UNIX shell, which gets
passed to the kernel for processing.

UNIX-2Copyright © April 19, 2010 by Chaim Ziegler, Ph.D.

The UNIX File System (chapter 6)

! The File System is used to organize data.

! In UNIX, anything from which data can be taken from or sent
to, is a file; for example,

- an ordinary file on a disk (text or binary)
- printer
- keyboard

! A directory in UNIX corresponds to a folder in Windows.

! When you are logged into your UNIX account, you are always
in some directory. This is called the current directory (%pwd)

! Your home directory is the default directory you are in when
you log in.

! Directories has a hierarchial structure represented by a
Directory Tree.

! A pathname is the address of a file or directory. It is the path
of the file (or directory) in the directory tree.

! An absolute pathname is the path from the root to the
specified file (or directory).
Example: /users3/ziegler/myfile
Example: /users3/ziegler/pgm1/mypgm.cpp
Example: /users3/ziegler/public_html/index.html
(Note: the first / represents the root)

! A relative pathname is the path is the path in the directory tree
beginning from the current directory
Example: myfile
Example: pgm1/mypgm.cpp
Example: public_html/index.html

! In UNIX, file names are case sensitive. Do not use spaces or
special characters in your file names (. and _ are allowed)

UNIX-3Copyright © April 19, 2010 by Chaim Ziegler, Ph.D.

Shell Utilities for File Management

%pwd //print working (current) directory
%cd pathname //change current directory
%cd //change to home directory
%ls //lists files in current directory
%ls -l //detailed list
%ls -la //detailed list including hidden files
%cat files //print files to stdout
%more files //file perusal filter (see manual)
%less files //file perusal filter (see manual)
%lpr files //print files
%rm files //remove (delete) a file
%mkdir pathname //create a directory
%rmdir pathname //remove an empty directory
%cp file1 file2 //copy file1 to file2
%mv file1 file2 //move (or rename) file1 to file2
%chmod perm pathname //change (permissions) mode
%ps //print process status and PIDs

UNIX-4Copyright © April 19, 2010 by Chaim Ziegler, Ph.D.

! Creating Files:
- copy or move another file:

cp file1 file2 //copy file1 to file2
mv file1 file2 //move (or rename) file1 to file2

- redirect standard output (funnel output to a file):
ls > myfile // > erases file if it exists
ls >> myfile // >> appends to end of file if it exists

- text editor:
emacs
vi
pico
nedit //GUI editor

- computer program: (see chapter 12)
e.g., out of a C++ program

! Permissions:
The permissions of each file and directory can be viewed
(using ls -l) as a sequence of 10 bits.

drwxrwxrwx (owner|group|public)

d - directory
r - read permission
w - write permission
x - execute permission

! Changing Permissions: (use the chmod command)
chmod 711 myfile
chmod 600 myfile //only the owner has access rights
chmod 644 myfile
chmod a=rx myfile //read and execute permission for all
chmod a+r myfile //add read permission to all

UNIX-5Copyright © April 19, 2010 by Chaim Ziegler, Ph.D.

Pipes

! You can send the output of one utility to the input of another
utility using a pipe|
Example:

who | sort
cat myfile | more

! Note:
Redirection > sends to a file.
Piping | sends to another command.

UNIX-6Copyright © April 19, 2010 by Chaim Ziegler, Ph.D.

The grep Command

! grep will search for a word inside a file or a directory
Example:

grep users myfile //searches file myfile for words
containing “users”

grep m myfile //searches file myfile for words
containing an “m”

grep users m* //search all files that start with m
for words containing “users”

UNIX-7Copyright © April 19, 2010 by Chaim Ziegler, Ph.D.

Processes (chapter 11)

! Since UNIX is a multitasking OS, a user can run several
processes at once.

! You can run each process in a different window.

! You can run processes in the background:
%mozilla& //firefox will run in the background

//the shell prompt will return to the window
%xterm& //a background terminal window
%nedit& //nedit will run in the background

! %ps
prints the list of currently running processes and their PID

! jobs
lists jobs current running

! kill PID (or kill %jobnumber)
terminates process PID

! CNTL-C
terminates a foreground process

! CNTL-Z
suspends a foreground process

! fg PID (or fg %jobnumber)
brings process PID to the foreground

! bg PID (or bg %jobnumber)
sends process PID to the background

UNIX-8Copyright © April 19, 2010 by Chaim Ziegler, Ph.D.

C++ Programming under UNIX

! Compiling:
g++ -c mypgm.cpp //this creates an object file mypgm.o

! Linking:
g++ mypgm.o //this creates an executable file a.out

! Running the Program:
a.out //this runs the executable file if current

//directory is in the search path
./a.out //runs the executable if the current

//directory is not in the search path

! Compiling and Linking in One Step:
g++ mypgm.cpp //this creates an executable file a.out

! Renaming the Executatble File:
mv a.out mypgm //renames the file
mypgm //runs the program

! Compiling and Linking - setting the name of the executable file:
g++ -o mypgm mypgm.cpp / / t h i s c r e a t e s a n

//executable file mypgm

UNIX-9Copyright © April 19, 2010 by Chaim Ziegler, Ph.D.

Multifile Projects under UNIX

The make Utility

! The make utility looks for its instructions in a file name
makefile.

! Example - Simple makefile:
#makefile for Bank Accounts program //comment

bank: BankAccounts.cpp //dependency line
g++ -o bank BankAccounts.cpp //action line

! Example - Multifile makefile:
#makefile for Contestant Database program //comment

quiz: ContestantDatabase.o Contestant.o Name.o Job_info.o Personal_info.o
 g++ -o quiz ContestantDatabase.o Contestant.o Name.o Job_info.o Personal_info.o

ContestantDatabase.o: ContestantDatabase.cpp //dependency line
g++ -c ContestantDatabase.cpp //action line

Contestant.o: Contestant.cpp //dependency line
g++ -c Contestant.cpp //action line

Name.o: Name.cpp //dependency line
g++ -c Name.cpp //action line

Job_info.o: Job_info.cpp //dependency line
g++ -c Job_info.cpp //action line

Personal_info.o: Personal_info.cpp //dependency line
g++ -c Personal_info.cpp //action line

clean: //clean: does not depend on any file
rm ./*.o //action for “make clean” command

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

