
Homework – Chapter 5 – Bowling Scores

33. Write a complete C++ program to do the followi ng: The main program
reads in and prints three bowling scores, score1 , score2 , and score3 . It
then calls a series of functions to process these s cores.

 The main program calls a function validgroup() to determine if this
set of three values forms a valid group. The funct ion validgroup()
receives four parameters (the 3 scores and a reference to an ofstream) .
For the group to be valid, each number must be in t he range from 0 to 300
(the possible scores in a bowling game). If the gr oup is valid, the
function prints a message saying so . If one or more of the numbers is
negative or greater than 300, the function prints an overall message that
the group is invalid . In addition, for each invalid value, the function
prints the score and a message . The function returns a signal (say 1 or
0) indicating the validity of the group. (Hint: use six “if” statements.)

 If the group is not valid, the main program sk ips processing and
simply goes on to the next group of three values.

 If the group is valid, the main program calls a function
onegamescore() , sending it two parameters, the value score1 and a
reference to an ofstream . This score is an integer from 0 to 300 (how
can we be sure of this?). The function converts th e score into a rating,
using the following system: 250 to 300 is a profess ional game; 200 to 249
is an excellent game; 140 to 199 is a very good gam e; 100 to 139 is a
good game; 50 to 99 is a poor game; below 50 is a h orrible game. The
function prints a message with the original score a nd the bowler's
rating . Then the main program repeats this process for s core2 and
score3 .

 Next the main program calls a function avg3sco res() , sending it
three parameters: the three scores. The function a vg3scores() finds the
average (as an integer) of the three scores and sen ds it back. The main
program prints the average . Finally, the main program calls
onegamescore() again, sending it the resulting average from the f unction
avg3scores() .

The main program then prints three blank lines .

 Then the main program goes on to the next grou p of three values.
When the main program runs out of groups (hint: use a sentinel), it
prints the final values of three counters it has be en keeping track of:
the total number of groups processed, the number of valid groups, and the
number of invalid groups .

Note:
 Output must be file directed.
 Do not send prompts to the output file.
 Do not use global ofstream and ifstream objects.
 ofstream and ifstream objects should be declared i n main()
 and passed to functions as needed.

Suggested Implementation:

1. Write code to read and print a group of three score s
2. Write code to continue reading and printing groups of three scores

until a sentinel is reached.
3. Create an input file from which to read the groups of scores
4. Have the output go to an output file
5. Implement a counter to count the total number of gr oups processed
6. Implement validgroup(). The prototype for validgrou p() should be:

int validgroup(int,int,int,ofstream &);
7. Implement the counters for the number of valid grou ps and the

number of invalid groups
8. Implement onegamescore(). The prototype for onegame score() should

be: void onegamescore(int,ofstream &);
9. Implement avg3scores(). The prototype for avg3score s() should be:

int avg3scores(int,int,int);
10. Complete the program and documentation as necessar y.

