
HW4: Bank Accounts: Using ArrayLists

You have been hired as a programmer by a major bank. Your first project is a small banking transaction system. Each account
consists of a number and a balance. The user of the program (the teller) can create a new account, as well as perform deposits,
withdrawals, balance inquiries, close accounts, etc.(Note: Some additional features have been added for this assignment.)

For this assignment, you must use Classes and move functionality into the classes. Specifically, you should have at least the
following classes:

1. A Bank class which consists of an ArrayList of Accounts currently active or closed.
*2. An Account class which consists of a Depositor, an account number, an account type, account status (open or closed),

account balance, an ArrayList of TransactionReceipts performed on the account. (Note: creating an account is
considered a transaction.)

3. A Depositor class which has a Name and a social security number.
4. A Name class which consists of first and last names.
5. A Check class with data fields consisting of an account number, the check amount, and a dateOfCheck
6. A TransactionTicket class with data fields consisting of an account number, a dateOfTransaction, typeOfTransaction

(deposit, withdrawal, balance inquiry, new account, delete account, etc.), amountOfTransaction (for deposits and
withdrawals), termOfCD (6, 12, 18, or 24 months - see below).

7. A TransactionReceipt class with data fields consisting of a TransactionTicket, successIndicatorFlag, reasonForFailure
String, accountType, preTransactionBalance, postTransactionBalance, postTransactionMaturityDate (for CDs).

As before, you must implement appropriate methods in each class so as to implement the functionality required. New methods
are to be added as necessary.

The data members of each class must be private. As such, you may need to provide accessor and mutator methods as necessary.
Any setters (mutators) used must be private.

Remember, all I/O should be done only in the methods of the class that contains the main() method.

As in previous assignments, initially, the account information of existing customers is to be read into the database. (Note: the
ArrayList of Accounts will grow dynamically as each account is created.) The program keeps tracks of the actual number of
currently active accounts. A neatly formatted table (with column headings) of the initial database of active accounts should
be printed. The column headings should include: Last Name, First Name, SSN, Account Number, Account Type, Account
Status (open or closed), Balance (with a precision of 2), Maturity Date (used for CD accounts).

As before, the program then allows the user to select from the following menu of transactions:

Select one of the following:
W - Withdrawal
D - Deposit
C - Clear Check
N - New account (NOTE: the ArrayList of Accounts will grow when you create a new Account)
B - Balance
I - Account Info (without transaction history) (NOTE: include at least one depositor who has multiple accounts)
H - Account Info plus Account Transaction History
S - Close Account (close (shut), but do not delete the account) (Note: no transactions are allowed on a closed account)
R - Reopen a closed account
X - Delete Account (close and delete the account from the database)) (NOTE: must have zero balance to delete)
Q - Quit

Note 1: The Clear Check transaction is only valid for checking accounts. It is like a withdrawal; except, you must also check the
date of the check. You may only clear a check if the date on the check is no more than six months ago. No post-dated
checks (checks with a future date) may be cleared. Use the Calendar class to implement this. In addition, a check will
clear only if there is sufficient funds in the account. If the account lacks sufficient funds, the check will not clear and the
account will be charged a $2.50 Service Fee for “bouncing” a check.

Note 2: CD accounts will now contain a maturityDate. Deposits and Withdrawals will be allowed only on or after the maturity
date. When a deposit or withdrawal is made, have the user select a new maturity date for the CD. the choices are either 6,
12, 18, or 24 months from the date of the deposit or withdrawal. Again, use the Calendar class to implement this.

Once the user has entered a selection, appropriate methods (in the class that contains the main() method) should be called to
perform the specific transaction. These methods will call the class implemented methods as necessary. At the end, before the
user quits, the program prints a neatly formatted table (as above) of the contents of the final database.

As in previous assignments, make sure to use enough test cases so as to completely test program functionality.

Make sure that there is at least one depositor that has multiple accounts at the bank.
Make sure that there are at least two depositors that have the same last name but different first names.

 Minimal Class Requirements:
1a. The Bank class should at least have a default (No-Arg) constructor that would allow statements of the form:

Bank bank = new Bank(); //implements a No-Arg Constructor
1b. The Bank class should have at least have the following methods:

public TransactionReceipt openNewAcct(Account...) //Bank creates a TransactionTicket for the new Account
public TransactionReceipt getBalance(TransactionTicket...)
public TransactionReceipt makeDeposit(TransactionTicket...)
public TransactionReceipt makeWithdrawal(TransactionTicket...)
public TransactionReceipt clearCheck(Check...)
public TransactionReceipt closeAcct(TransactionTicket...)
public TransactionReceipt reopenAcct(TransactionTicket...)
public TransactionReceipt deleteAcct(TransactionTicket...)
private int findAcct(...) (return value indicates index of found Account or reason for failure)
public Account getAcct(...)
public int getNumAccts(...)

2a. The Account class should at least have a constructor that would allow statements of the form:
Account account = new Account(...); //implement both a No-Arg and a Parametized Constructor

2b. The Account class should have at least the following methods:
public TransactionReceipt getBalance(TransactionTicket...)
public TransactionReceipt makeDeposit(TransactionTicket...)
public TransactionReceipt makeWithdrawal(TransactionTicket...)
public TransactionReceipt clearCheck(Check...)
public TransactionReceipt closeAcct(TransactionTicket...)
public TransactionReceipt reopenAcct(TransactionTicket...)
public ArrayList<TransactionReceipt> getTransactionHistory(TransactionTicket...)
public Depositor getDepositor(...)
public int getAcctNumber(...)
public String getAcctType(...)
public Calendar getMaturityDate(...)
public void addTransaction(TransactionReceipt...)

 3a. The Depositor class should at least have a constructor that would allow statements of the form:
Depositor depositor = new Depositor(...); //implement both a No-Arg and a Parametized Constructor

3b. The Depositor class should at least the following methods:
public Name getName(...)
public String getSSN(...)

4a. The Name class should at least have a constructor that would allow statements of the form:
Name name = new Name(...); //implement both a No-Arg and a Parametized Constructor

4b. The Name class should at least the following methods:
public String getFirstName(...)
public String getLastName(...)

5a. The Check class should at least have a constructor that would allow statements of the form:
Check check = new Check(...);

6a. The TransactionTicket class should at least have a constructor that would allow statements of the form:
TransactionTicket transactionTicket = new TransactionTicket(...);

6b. The TransactionTicket class should at least the following methods:
public Calendar getDateOfTransaction(...)
public String getTransactionType(...)
public double getTransactionAmount(...)
Public int gettermOfCD(...)

7a. The TransactionReceipt class should at least have a constructor that would allow statements of the form:
TransactionReceipt transactionReceipt = new TransactionReceipt(...);

7b. The TransactionReceipt class should at least the following methods:
public TransactionTicket getTransactionTicket(...)
public boolean getTransactionSuccessIndicatorFlag(...)
public String getTransactionFailureReason(...)
public double getPreTransactionBalance(...)
public double getPostTransactionBalance(...)
public Calendar getPostTransactionMaturityDate(...)

8. Add additional constructors and methods to each class as necessary.

9. The class containing the main() method should have at least the following methods:
public static void main(String[] args)
public static void readAccts(...)
public static void printAccts(...);
public static void menu(...)
public static void balance(...);
public static void deposit(...);
public static void withdrawal(...);
public static void clearCheck(...);
public static void acctInfo(...);
public static void acctInfoHistory(...);
public static void newAcct(...);
public static void closeAcct(...);
public static void reopenAcct(...);
public static void deleteAcct(...);

The transaction methods in main() should “fill out” a TransactionTicket object, and then call the appropriate method within the
Bank or Account class to carry out the requested transaction. The method should then print an appropriate transaction receipt

10. All I/O should be done only in the methods of the class that contains the main() method.

Submission Requirements:
Create a folder on Google Drive that will contain the following:
1. The source files (i.e., *.java files) for each of the implemented Classes:

pgmHW4.java
Bank.java; Account.java; Depositor.java, Name.java
Check.java; TransactionTicket.java; TransactionReceipt.java;

2. The text file containing the initial database of accounts (e.g., initAccounts.txt)
3. The test cases text file (e.g., myTestCases.txt)
4. The output text file which contains all of the required program output (e.g., pgmOutput.txt)
Then, make the folder shareable and send me a link to the folder.

Sample Transaction Output:

Transaction Requested: Balance Inquiry
Account Number: 123456
Account Type: Savings Account
Current Balance: $200.55

Transaction Requested: Balance Inquiry
Error: Account number 999999 does not exist

Transaction Requested: Deposit
Account Number: 123456
Account Type: Savings Account
Old Balance: $200.55
Amount to Deposit: $100.25
New Balance: $300.80

Transaction Requested: Withdrawal
Account Number: 987654
Account Type: Checking Account
Current Balance: $2.33
Amount to Withdraw: $100.50
Error: Insufficient Funds Available

Transaction Requested: Account Info
SSN: 123445678
 Last Name First Name SSN Acct Num Acct Type Status Balance Maturity Date
 Doe John 123445678 123456 Savings Open $ 300.80
 Doe John 123445678 222222 CD Open $5200.55 05/25/2023
 Doe John 123445678 333333 Checking Open $ 899.74
 3 accounts were found

Transaction Requested: Clear Check
Account Number: 567890
Account Type: Checking Account
Old Balance: $1234.56
Amount of Check: $10.50
New Balance: $1224.06

Transaction Requested: Clear Check
Account Number: 567890
Account Type: Checking Account
Old Balance: $1224.06
Amount of Check: $7000.00
New Balance: $1221.56
Error: Insufficient Funds Available - Bounce Fee ($2.50) Charged

Transaction Requested: Clear Check
Account Number: 567890
Account Type: Checking Account
Old Balance: $1221.56
Amount of Check: $22.22
New Balance: $1221.56
Error: Check not cleared - Post-dated check: 11/22/2023

Transaction Requested: Account Info With Transaction History

SSN: 123445678

 Last Name First Name SSN Acct Num Acct Type Status Balance Maturity Date
 Doe John 123445678 123456 Savings Open $ 300.80

 ***** Account Transactions *****

 Date Transaction Amount Status Balance Reason For Failure

11/27/2022 Open New Account $ 200.55 Done $ 200.55

11/27/2022 Balance Inquiry $ 0.00 Done $ 200.55

11/27/2022 Deposit $ 100.25 Done $ 300.80

11/27/2022 Deposit $ -75.75 Failed $ 300.80 $-75.75 is an invalid amount

11/27/2022 Clear Check $ 10.10 Failed $ 300.80 Account 123456 is not a Checking account

 Last Name First Name SSN Acct Num Acct Type Status Balance Maturity Date
 Doe John 123445678 222222 CD Open $5200.55 05/25/2023

 ***** Account Transactions *****

 Date Transaction Amount Status Balance Reason For Failure

11/27/2022 Open New Account $5000.00 Done $5000.00

11/27/2022 Balance Inquiry $ 0.00 Done $5000.00

11/27/2022 Deposit $ 200.55 Done $5200.55

11/27/2022 Deposit $ 100.96 Failed $5200.55 CD maturity date 05/27/2023 not reached

 Last Name First Name SSN Acct Num Acct Type Status Balance Maturity Date
 Doe John 123445678 333333 Checking Open $ 899.74
 ***** Account Transactions *****

 Date Transaction Amount Status Balance Reason For Failure

11/27/2022 Open New Account $ 999.99 Done $ 999.99

11/27/2022 Withdrawal $ 100.25 Done $ 899.74

11/27/2022 Clear Check $ 123.45 Done $ 776.29

 3 accounts were found

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5

