Algorithmic Thinking

Computers are not people!

People can think on their own.

Computers must be told exactly what do!

Computers must be told the exact sequence of instructions to follow in order to accomplish a task.
1. Determine an **algorithm** to solve the problem:
 An algorithm is a sequence of steps that can be followed to solve the problem. (An algorithm is like a recipe.)

2. **Write a program** to implement the algorithm:
 - use very specific, detailed instructions.
 - use a “language” the computer understands.

3. **Compile** the program:
 A compiler translates the program into machine language. Fix any syntax errors that the compiler finds.

4. **Run (or execute)** the program:
 At this time we may find other errors (in execution or logic) that must be corrected.

5. **Debug** the program:
 Test the program and fix any errors.

6. **Maintain** the program:
 Keep monitoring the program for unexpected errors.

Note: An **Interpreter** translates a program to machine language as it is being loaded and executed.
Examples of Algorithms:

- **Find the oldest person in the room:**
 - Go through the people sequentially, keeping track of the oldest so far.
 - Have the people pair up, eliminate the younger of each pair. Keep pairing up and eliminating the younger one of each pair until there is only one left.

- **Search for telephone number:**
 - Sequential search
 - Binary search
Examples of Bugs:

1. The Mars Climate Orbiter was lost in space in 1999. In the calculation of its route, some programmers used the metric system while others used English units!

2. A Patriot missile failed to intercept a scud fired at US troops in 1991. The following is from an article on the incident “Specifically, the time in tenths of second as measured by the system's internal clock was multiplied by 1/10 to produce the time in seconds. This calculation was performed using a 24 bit fixed point register. In particular, the value 1/10, which has a non-terminating binary expansion, was chopped at 24 bits after the radix point. The small chopping error, when multiplied by the large number giving the time in tenths of a second, led to a significant error. Indeed, the Patriot battery had been up around 100 hours, and an easy calculation shows that the resulting time error due to the magnified chopping error was about 0.34 seconds.”