
11-1Copyright © January 8, 2006 by Chaim Ziegler, Ph.D.

Unsolvability and The Halting Problem

Can all function be computed?
The Church-Turing thesis stated condit ions w hich a
function must satisfy in order for it to be
computable.

The Halting Problem:
Simple example of a non-computable function.
Show ing that it is non-computable requires show ing
that a paradox exists.

1. Loops - instructions to a computer that are
repeated over and over again.

Repeat as long as X is not equal to 0
Add 1 to X

2. Does this loop end? (Must check three cases)
a. Init ial value of X is 0
b. Init ial value of X is a negative integer
c. Init ial value of X is greater than 0

3. Statement of the Halt ing Problem:
Given a set of instruct ions for a computer (a
program), predict w hether or not the program
w ill terminate.
Do this for any set of instructions.
Can w e alw ays do this? That is, can w e prove
that w e can alw ays predict the outcome of a
program?

A. Running the program is not a solut ion.
Suppose you tried to run the program of
part 2c above. We could t ired of w ait ing
and abort the program. (No predict ion!)

11-2Copyright © January 8, 2006 by Chaim Ziegler, Ph.D.

B. Write a computer program that w ill analyze
w hether or not another program w ill
terminate, given some init ial data.

We w ill call the method to do this Algorithm
A. We w ill give Algorithm A the program to
be tested as a compiled set of instructions.
Hence, to Algorithm A, there is no
difference betw een the representation of the
program (in binary) and the data (also in
binary).

The computer analysis program, called N,
w ill have the follow ing steps:
i. Read a program P
ii. Use Algorithm A to determine if P halts.
iii. If Algorithm A says that P halts, enter an

inf inite loop (like 2c above).
iv. If Algorithm A says that P never halts,

w rite “ Done” and stop.

C. Here is the paradox. Imagine giving program N
itself to analyze.

1. If A says that N w ill terminate, then N w ill
enter an infinite loop and never terminate

2. If A says that N w ill not halt , then N w ill
w rite “ Done” and terminate.

This paradox show s that the proposed program
N can not exist! We conclude that w e can not
predict for all cases w hether or not a program
(or an algorithm) w ill halt. Thus, there are some
problems for w hich w e can not f ind the solut ion.

11-3Copyright © January 8, 2006 by Chaim Ziegler, Ph.D.

Running Time and Infeasibility

Is it possible to solve every computable function?

A function can be computable, yet be infeasible to
compute in a reasonable amount of t ime.

B. Is a function feasible to compute?

To decide if a problem is computable in a reasonable
amount of t ime, one must consider all possible
algorithms. If one them can carry out the calculat ion
in a reasonable amount of t ime (and size), the
problem is feasible.

Example: Sort ing a set of n elements - test 2 algorithms:

1. Method 1 - The selection sort algorithm:
- f ind the largest of the n elements.
- f ind the largest of the remaining n-1 elements.
- f ind the largest of the remaining n-2 elements.
...
- the smallest element is remaining.

Work required is n+ n-1+ ...+ 2+ 1 = n(n+ 1)/2 units

2. Method 2 - Exhaustive list ing and search:
- list all permutations (orderings) of the elements.
- pick the one that is sorted.

Work required is n(n-1)(n-2) ... (3)(2)(1) = n! units

e.g., for n= 5:
method 1 requires 15 units of w ork
method 2 requires 120 units of w ork!

	Page 1
	Page 2
	Page 3

