
4-1Copyright © January 8, 2006 by Chaim Ziegler, Ph.D.

Algorithmic Thinking

Computers are not people!

People can think on their own.

Computers must be told exactly what do!

Computers must be told the exact sequence of
instructions to follow in order to accomplish a task.



4-2Copyright © January 8, 2006 by Chaim Ziegler, Ph.D.

Programming to Solve a Problem:
(Software Life-Cycle)

1. Determine an algorithm to solve the problem:
An algorithm is a sequence of steps that can be
followed to solve the problem. (An algorithm is like a
recipe.)

2. Write a program to implement the algorithm:
- use very specific, detailed instructions.
- use a “language” the computer understands.

3. Compile the program:
A compiler translates the program into machine
language. Fix any syntax errors that the compiler
finds.

4. Run (or execute) the program:
At this time we may find other errors (in execution or
logic) that must be corrected.

5. Debug the program:
Test the program and fix any errors.

6. Maintain the program:
Keep monitoring the program for unexpected errors.

Note: An Interpreter translates a program to machine
language as it is being loaded and executed.



4-3Copyright © January 8, 2006 by Chaim Ziegler, Ph.D.

Examples of Algorithms:

! Find the oldest person in the room:

- Go through the people sequencially, keeping track of
the oldest so far.

- have the people pair up, eliminate the younger of
each pair. Keep pairing up and eliminating the
younger ones of the pair until there is only one
left. 

! Search for telephone number:

- Sequential search
- Binary search



4-4Copyright © January 8, 2006 by Chaim Ziegler, Ph.D.

Examples of Bugs:

1. The Mars Climate Orbiter was lost in space in 1999.
In the calculation of its route, some programmers
used the metric system while others used English
units!

2. A Patriot missile failed to intercept a scud fired at
US troops in 1991. The following is from an article
on the incident “Specifically, the time in tenths of a
second, as measured by the system’s internal
clock, was multiplied by 1/10 to produce the time
in seconds.”

A recipe is a good analogy of a program:
- ingredients

constants, variables
data types, integer and real numbers, characters

- detailed step-by-step-instructions
statements

- repeated actions (e.g., separate 5 eggs)
loops

- pre defined actions (e.g., saute, puree, etc.)
functions, parameters

- decisions (e.g., bake until brown, beat until firm, etc.)
conditions


	Page 1
	Page 2
	Page 3
	Page 4

