Computers

® A computer is a machine capable of following the instructions
of a program.

® A program is a set of instructions.

® Computer Organization: Hardw are
- The Central Processing Unit: (CPU)
1. Carries out the instructions of the programs.
2. Moves data from one part of machine to another part of
the machine.
3. Manipulates data (e.g., adds, compares, etc.).

- Memory:

1. Internal Memory: memory internal to the system printed
circuit boards. Used to store programs and data that are
currently being processed by the CPU.

a) RAM - Random Access Memory
b) ROM - Read Only Memory

2. External Memory: memory external to the system
printed circuit boards. Used for long term and mass
storage of programs and data.

a) Floppy Disks
b) Hard Disks

c) Magnetic Tape
d) CD ROM

- Input/Output Devices:

1. Input Devices: used to input programs and data into the
computer.
a) Keyboard
b) Mouse or Trackball

2. Output Devices: used to receive output information from
the computer.
a) Screen
b) Printer

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '1

® Computer Organization: Software

- Program:
A set of instructions that determines a computer's action.

- Softw are:
A program or a collection of programs that are not 'built-in’
to the hardw are.

- The Operating System:
The softw are that manages the entire computer system.

- Programming Language:
A language with which programs are written.

- C, C+ + |, Java, Pascal:
High-level programming languages.

- Assembly Language:
A low-level programming language.

- Machine Language
The "language" that the computer actually understands.
(strings of 1s and 0s)

- Compiler:

Software that translates programs written in high-level
languages into machine language.

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '2

Simple C Programs

® Example:
/* display a message on the monitor */
#include < stdio.h>
void main()

printf("Welcome to computer programming!\n");

}

® Example:
/* type in a number on the keyboard & echo it to the screen*/
#include < stdio.h>
void main()

int number;

printf(" Type in a number on the keyboard\n");
scanf("%d",&number);
printf(" The number is % d\n" ,number);

}

® Example:
/* a program to do some addition */
#include < stdio.h>
void main()

int number;
printf(" Type in a number on the keyboard\n");
scanf("%d",&number);

number = number + 5;
printf(" The new number is % d\n",number);

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '3

The C Programming Language
® Like any language, C has:

- A Lexicon (a dictionary):
A set of allow able basic elements.

- A Syntax (a grammar):
Rules for combining the basic elements into programs.

- A Semantics (meaning):
Rules for understanding what programs and their parts
cause the computer to do.

® Sample Program:

/* a sample C program to add some numbers */
#include < stdio.h>
void main()

int number1, number2, sum;

printf(" Type in the first number\n");
scanf("%d",&number1);

printf(" Type in the second number\n");
scanf("%d",&number2);

sum = number1 + number2 + 5;
printf(" The final sum is %d",sum);

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '4

The Lexical Elements of C

® Keyw ords:
Reserved Words or Predeclared Identifiers that have special
meaning in C:
- main -char - printf - for - if - switch
- int - float - scanf -while -else - struct

® |dentifiers:

Words that the writer of the program chooses to name things
(e.g., functions, variables, etc.).

Identifiers must start with a letter or an underbar. The
remaining characters are any combination of letters,
numerals, and underbars. (Note: upper and low er case are
different.)

- number1

- Number1

- sum

- R2D2

- Last Name

® Strings:
Anything that is written betw een double quotes.
- "The final sum is "
- "hello!"

® Numeric Constant:
Numerals w hich express specific numeric values.
5
227
33.676

® Special Characters:
Characters or groups of characters that have a special

meaning in C.
;L {} < <= > >= ==+ -* % & &&| || etc.

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '5

The Program Syntax of C
® Rules for grouping C statements into C programs.
® The Structure of a Simple C Program:

/* comment on purpose of program */ // comment

#directives /I compiler directives
void main() /I program header
/] start of program

data_type list_of _identifiers; // variable declarations

< data_type1> < list1> ;
< data_type2> < list2> ;

action part of the program /I do program's task
} /I end of program

® A variable is a part (location) of memory that is capable of
holding a piece of data that may change its value.

® The 'variable declaration' Part of the Program:

Indicates how much space in memory that the action part of
the program will need, and the identifiers that will be used
to refer to those locations. These identifiers are called the
variables of the program.

® The Action Part of the Program:

The series of C statements (between "{" and "}") that
accomplish the program's task.

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '6

The Statement Syntax of C

® Rules for combining lexical elements into C statements.

® The Declaration Statement Syntax:
data type variable 1,...,variable_n;

int number;
int num1, num2, num3;

integer number; /1 illegal
ints num1, num2, num3; // illegal
int switch; /1 illegal

® C Expressions:

an
an
an
an
an

integer constant 3
identifier X
identifier, an operator, an integer constant sum + 10
integer constant, an operator, an identifier 10 * y
identifier, an operator, an identifier sum - num

® The Assignment Statement Syntax:
variable = expression,;

Z
X

33;
2

sum = number1 + number2 - 5;
sgnumber = number * number;

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '7

The printf Statement

® The printf Statement Syntax:
printf("format string", item1,item2,...,itemN);

w here each item is either a variable or an expression .

® The printf always contains a format (or control) string.

® The list of items is optional.

® Each item to be printed needs a conversion specification
within the format string. The conversion specification
describes the exact way that the item is to be printed.

® Example:
number = 4;
sgnumber = number * number;
printf(" The square of %d is % d\n",number,sqnumber);

® The %d specification means to print as a decimal number (i.e.,
an integer).

® The \n means newline and tells the computer to skip to the
next line.

® The above code prints:
The square of 4 is 16

® Another Example:
printf(" % d\n" ,number+ 1);

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '8

C Statement Types
® C statements can be simple or compound.
® Simple Statement (Examples):
printf(" hello!");
X = 25;
® Compound Statement:

{

statement-list

}

® Statement-List:

A list of C statements. Each statement may be simple or
compound.

statement;
statement;

:'s't.atem ent;
statement;

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '9

Arithmetic Operations

® Addition:
a+ b

® Subtraction:
a-»b

® Multiplication:
a*b

® Division:
alb

a%b (yields remainder of integer division)

® Examples:
int number,sgnumber;
int num1,num2;
int quotient,remainder;

number = 4;
sgnumber = number * number; {sgnumber is assigned 16}

num1 = 5;

num2 = 37;

quotient = num2 / num1; {quotient is assigned 7}
remainder = num2 % num1; {remainder is assigned 2}

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '1 O

Conditions

® A C condition is a Boolean expression of the form:
expression_1 relational operator expression_ 2
w hich takes on the value of either TRUE or FALSE.

® Relational Operators:

less than

less than or equal to
equal to

not equal to

greater than

greater than or equal to

VV'WIIA/\
i

® Example:
Let: n= 15; sum = 11

Then:
sum < n TRUE
n<=20 FALSE
n> 0 TRUE
n>= sum-1 TRUE
n== n+ 1 FALSE
n+ 21!= 17 FALSE

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '1 1

A Complete C Program

® Problem:
Write a C program to compute and print the squares of the
integers from 4 to 8.

® Program:

[* program to print the number from 4 to 8 and their squares */
#include < stdio.h>
void main()

{

int number,sgnum;

number = 4;

sgnum = number * number;
printf("number = %d sqnum = %d\n",number,sqgnum);
number = 5;

sgnum = number * number;

printf("number = %d sqnum = %d\n",number,sqnum);
number = 6;

sgnum = number * number;

printf("number = %d sqnum = %d\n",number,sqgnum);
number = 7;

sgnum = number * number;

printf("number = %d sqnum = %d\n",number,sqnum);
number = 8;

sgnum = number * number;
printf("number = %d sqnum

}
® Output of the Program:

% d\n" ,number,sqnum);

number = 4 sgnum = 16
number = 5 sgnum = 25
number = 6 sgnum = 36
number = 7 sgnum = 49
number = 8 sgnum = 64

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '1 2

Iteration

® Repeating a Series of Instructions:

number = 4;

sgnum = number * number;

printf("number = %d sqnum = %d\n",number,sgnum);
number = 5;

sgnum = number * number;

printf("number = %d sqnum = %d\n",number,sqnum);
number = 6;

sgnum = number * number;

printf("number = %d sqnum = %d\n",number,sqgnum);

® The for statement (or for loop) repeats a group of statements
w hile a control-variable is betw een its initial and final values.

® The for Statement:
for (exp1; exp2; exp3)
body (statement) of the loop;

w here
exp1 - initializes one or more variables,
exp2 - performs a relational test,
exp3d - updates one or more variables.
body of loop can be either a simple statement or a
compound statement enclosed with braces.

® Example:
for(j= 1;j<= 10;j= j+ 1)
printf(" % d\n",j);

® Example:
for (number = 4; number < = 6; number = number+ 1) {
sgnum = number * number;
printf("number = %d sqnum = %d\n",number,sqnum);

}

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '1 3

® Example:
for (number = 8; number > = 4; number = number-1) {
sgnum = number * number;
printf("number = %d sqnum = %d\n",number,sgnum);

}

® Revised Program

® Problem:
Write a C program to compute and print the squares of the
integers from 4 to 8.

® Program:

/* program to print the number from 4 to 8 and their squares */
#include < stdio.h>
void main()

{

int number,sgnum;

for (number = 4; number < = 8; number= number+ 1) {
sgqnum = number * number;
printf("number= %d sqnum = %d\n",number,sqnum);

}
}

® Trace of the Program

number = 4 sgnum = 16
number = 5 sgnum = 25
number = 6 sgnum = 36
number = 7 sgnum = 49
number = 8 sgnum = 64

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '1 4

Shorthand for Increments and Decrements

® Because increments and decrements are so common, C has a
shorthand notation for these operations:

j= j+ 1;can bereplaced by j+ + ;
i = i-1; can be replaced by i--;

® Example: Use in for loops
for (number = 4; number < = 8; number+ +) {
sgnum = number * number;
printf("number = %d sqnum = %d\n",number,sqnum);

® Example:
for (number = 8; number > = 4; number--) {
sgnum = number * number;
printf("number = %d sqnum = %d\n",number,sqnum);

® Example
for(i= 1,j= 7;i< ji=i+3,j++)
printf("%d %d\n",i,j);
- Output:
17

4 8
79

® Note: + + j will also increment (can be different than j+ +)
® Note: --i will also decrement (can be different than i--)

Copyright © December 20, 2004 by Chaim Ziegler, Ph.D. 1 '1 5

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15

