
2-1Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Evaluating a Formula

! Problem (The Registrar's Headache):
Student ' s are to be allow ed to register for a certain course

of fered by an outstanding Professor based on their grade
point average (x) and a complicated formula given below .

Write a C program to produce a table for the value produced
by the formula for x = 0 .00 up to x = 4 .00 , increasing x
by 0 .50 each t ime.

If the value of the formula is greater than or equal to zero the
student is to be admit ted into the class. Otherw ise, the
student can not register for the class.

! Formula:

! Program:
/* program prob2
 * create a table to evaluate a formula y = f (x)
 * /
void main()
{

declare x and y as real variables
act ion part of program

}

2-2Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Data Types for Real Numbers

! Data Type float:
" float" creates a single precision real variable.

f loat gpa;

! Data type double:
" double" creates a double precision real variable. Double

precision numbers can represent larger and smaller
numbers than single precision numbers and w ith more
precision (more bits are used to store the number).

double gpa;

! Return to Our Problem:
/* program prob2
 * create a table to evaluate a formula y = f (x)
 * /
void main()
{

double x,y;

act ion part of program
}

2-3Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Setting Up the for loop

! Another Revision:
/* program prob2
 * create a table to evaluate a formula y = f (x)
 * /
void main()
{

double x,y;

for (x = 0 .00 ; x < = 4 .00 ; x = x + 0 .50) {
compute result = the formula applied to gpa
print gpa and result
if result is > = 0 then print " Admit "

}
}

2-4Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Writing the Formula in C

! Formula:

! C Statement:
y = x * x * x + 7 * x - 1 / x * x - x + 5 / 3 ; { w rong}

! Order (Precedence) of Operations:
a) Unary M inus, Unary Plus, + + , --
b) * , /, %
c) + , -

! Associativity of Operations:
Associat iv ity determines w hich of tw o operators has priority

given that they have the same precedence.
a) For binary operators, associat iv ity is lef t to right .
b) for unary operators, associat iv ity is right to lef t .

e.g., y = -x+ + ;

! Example:
Let a = 10 ; b = 2

y = a / b + 3 { y = 8 w rong}
y = a / (b + 3) { y = 2 correct }

! Our Formula:
y = (x * x * x + 7 * x - 1) / (x * x - (x + 5) / 3);

! Note:
When in doubt, use parentheses!

2-5Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Printing Real Numbers

! printf specif icat ions for real numbers:

% f w ill print a real number in decimal format w ith six decimal
places to the right of the decimal point .

x = 1 .0 ;
y = 6 .5 ;
print f (" gpa = % f result = % f \n" ,x,y);

This prints:
gpa = 1 .000000 result = 6 .500000

! Another Revision:
/* program prob2
 * create a table to evaluate a formula y = f (x)
 * /
include < stdio.h>
void main()
{

double x,y;

for (x = 0 .00 ; x < = 4 .00 ; x = x + 0 .50) {
y = (x * x * x + 7 * x - 1) / (x * x - (x + 5) / 3);
print f (" gpa = % f result = % f \n" ,x,y);
if result is > = 0 then print " Admit "

}
}

2-6Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

The if (Conditional) Statement

! The if (Conditional) Statement:
if (condit ion)

simple_statement

! Compound Statement Form:
if (condit ion) {

compound_statement
}

! Yet Another Revision:
/* program prob2
 * create a table to evaluate a formula y = f (x)
 * /
include < stdio.h>
void main()
{

double x,y;

for (x = 0 .00 ; x < = 4 .00 ; x = x + 0 .50) {
y = (x * x * x + 7 * x - 1) / (x * x - (x + 5) / 3);
print f (" gpa = % f result = % f \n" ,x,y);
if (y > = 0)

print f (" Admit \n");
}

}

2-7Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

The Program So Far

! Program:
/* program prob2
 * create a table to evaluate a formula y = f (x)
 * /
include < stdio.h>
void main()
{

double x,y;

for (x = 0 .00 ; x < = 4 .00 ; x = x + 0 .50) {
y = (x * x * x + 7 * x - 1) / (x * x - (x + 5) / 3);
print f (" gpa = % f result = % f \n" ,x,y);
if (y > = 0)

print f (" Admit \n");
}

}

! Output:
gpa = 0 .000000 result = 0 .600000
 Admit
gpa = 0 .500000 result = -1 .657895
gpa = 1 .000000 result = -7 .000000
gpa = 1 .500000 result = 154.500000
 Admit
gpa = 2 .000000 result = 12 .600000
 Admit
gpa = 2 .500000 result = 8 .566667
 Admit
gpa = 3 .000000 result = 7 .421052
 Admit
gpa = 3 .500000 result = 7 .048673
 Admit
gpa = 4 .000000 result = 7 .000000
 Admit

2-8Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Creating a Readable Table

! Table Header:
print f (" Table of Funct ion Values\n");

! Double Spacing:
print f (" Table of Funct ion Values\n\n");

! Staying on the Same Line:
print f (" gpa = % f result = % f" ,x,y);

! Starting a New Line:
print f (" \n");

! Printing a Table Trailer:
print f (" \nThe table is f inished!\n");

! Column Headings:
print f (" Grade Point Average Value of Formula Status\n");

2-9Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

The Complete Program:
/* program prob2
 * create a table to evaluate a formula y = f (x)
 * /
include < stdio.h>
void main()
{

double x,y;

print f (" Table of Funct ion Values\n\n");
print f (" Grade Point Average Value of Formula Status\n");
for (x = 0 .00 ; x < = 4 .00 ; x = x + 0 .50) {

y = (x * x * x + 7 * x - 1) / (x * x - (x + 5) / 3);
print f (" % f % f" ,x,y);
if (y > = 0)

print f (" Admit ");
print f (" \n");

}
print f (" \nThe table is f inished!\n");

}

! Output:
Table of Function Values

Grade Point Average Value of Formula Status
 0.000000 0.600000 Admit
 0.500000 -1.657895
 1.000000 -7.000000
 1.500000 154.500000 Admit
 2.000000 12.600000 Admit
 2.500000 8.566667 Admit
 3.000000 7.421052 Admit
 3.500000 7.048673 Admit
 4.000000 7.000000 Admit

The table is finished!

2-10Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Aligning Columns
! The TAB Character "\t":

Insert ing the tab character " \t " into the format st ring causes
the cursor to tab to the next tab posit ion before print ing.

! Final Version:
/* program prob2
 * create a table to evaluate a formula y = f (x)
 * /
include < stdio.h>
void main()
{

double x,y;

print f (" \t \t \tTable of Funct ion Values\n\n");
print f (" Grade Point Average\tValue of Formula\tStatus\n");
for (x = 0 .00 ; x < = 4 .00 ; x = x + 0 .50) {

y = (x * x * x + 7 * x - 1) / (x * x - (x + 5) / 3);
print f (" % f \t \t% f" ,x,y);
if (y > = 0)

print f (" \t \tAdmit ");
print f (" \n");

}
print f (" \nThe table is f inished!\n");

}

! Output:
Table of Function Values

Grade Point Average Value of Formula Status
0.000000 0.600000 Admit
0.500000 -1.657895
1.000000 -7.000000
1.500000 154.500000 Admit
2.000000 12.600000 Admit
2.500000 8.566667 Admit
3.000000 7.421052 Admit
3.500000 7.048673 Admit
4.000000 7.000000 Admit

The table is finished!

2-11Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Escape Sequences

! In C, the computer uses the \ (backslash) symbol as an escape
character. It tells the computer to t reat the next character as
special.

! The combinat ion of the \ (backslash) follow ed by a character
is know n as an escape sequence.

! Common Escape Sequences in C:
\n - the new line character (linefeed)
\t - the tab character
\b - the backspace character
\" - the double quote character
\\ - the backslash character
\% - the percent sign character (some compilers use % %)
\0 - the null character
\a - BEL (makes an audible signal)
\f - formfeed (new page on printer)
\r - carriage return (return to beginning of line)

! Example:
print f (" \% \\ \" \n");

% \ "

2-12Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Compound Assignment Operators

! + = , -= , * = , /= , % =

gpa = gpa + 0 .50 ; can be w rit ten as gpa + = 0 .50 ;
gpa = gpa - 0 .50 ; can be w rit ten as gpa -= 0 .50 ;
gpa = gpa * 0 .50 ; can be w rit ten as gpa * = 0 .50 ;
gpa = gpa / 0 .50 ; can be w rit ten as gpa /= 0 .50 ;
num = num % 7; can be w rit ten as num % = 7 ;

! Note:
number = number + 1 ; is equivalent to
number + = 1 ; is equivalent to
number+ + ; is equivalent to
+ + number;

2-13Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Precedence of Arithmetic, Assignment, & Relational Operators

Precedence Associat iv ity
a) Unary M inus, Unary Plus, + + , -- right to lef t
b) * , /, % lef t to right
c) + , - lef t to right
d) < , < = , > , > = lef t to right
e) = = , != lef t to right
f) = , + = , -= , * = , /= , % = right to lef t

2-14Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Scientific Notation

! Scient if ic notat ion allow s a real number to be represented by
its signif icant digits t imes a pow er of ten.

! In C, real numbers (data types f loat and double) are stored as
f loat ing point numbers.

! Float ing point numbers are stored a mantissa plus an
exponent. The mant issa represents the signif icant digits of the
number w ith 1 digit to the lef t of the decimal point . The
exponent tells how far and in w hich direct ion the decimal
point must move (f loat) to get the actual value.

! Examples:

0 .50 = 5 .000000e-01 = 5 x 10 -1

6000 = 6 .000000e+ 03 = 6 x 10 3

3.25 = 3 .250000e+ 00 = 3 .25 x 10 0

-0 .02 = -2 .000000e-02 = -2 .0 x 10 -2

! Printing in Scientific Notation:
- To print real numbers in scient if ic notat ion, use the % e

conversion specif icat ion w ithin the format st ring.
- The number w ill print w ith a mant issa that has 1 digit to the

lef t of the decimal point and 6 digit s to the right of the
decimal point .

- The exponent prints as " e" follow ed by a sign follow ed by
a 2 digit exponent value.

! Example:
num = 0 .50 ;
print f (" % e" , num);

2-15Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Mixed Mode Arithmetic

! An arithmet ic expression that applies an operator to tw o
operands of the same type produces a result of that type.

! In C, it is possible to perform arithmet ic operat ions on
operands of dif ferent types. This is called mixed mode
arithmetic.

! When an operator is applied to tw o operands of dif ferent
types, C uses its rule of automat ic type conversion to convert
the value of the more rest rict ive type to that of the less
rest rict ive type (e.g., " int " is more rest rict ive than " double" or
" f loat "

! Example
double real_num, real_sum;
int int_num, int_sum;

int_num = 5 ;
real_num = 5 .6 ;
int_sum = int_num + real_num;
real_sum = int_num + real_num;
print f (" int_sum = % d and real_sum = % f \n" ,

int_sum,real_sum);

! Output :
int_sum = 10 and real_sum = 10.600000

! Notes:
- When a real number is assigned to an integer, the f ract ional

part is t runcated.

- For real division, one or both of the operands must be real:
real_num = int_num/2; // w rong
real_num = (double)int_num/2; // correct (type cast ing)

2-16Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Standard (Predeclared) Library Functions:

! sqrt (x)
real_num = sqrt (64); // real_num = 8 .0

! abs(integer)
int_num = abs(25); // int_num = 25
int_num = abs(-25); // int_num = 25

! fabs(realnum)
real_num = fabs(-2 .72); // real_num = 2 .72

! ceil(realnum)
int_num = ceil(3 .54); // int_num = 4

! f loor(realnum)
int_num = f loor(3 .54); // int_num = 3
(Note: same as int_num = 3 .54)

! Note: to round a real number you can w rite
int_num = real_num + 0 .5 ;

! Note: to use the above library funct ions, you must include the
follow ing direct ive:

include < math.h>

2-17Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Data Type char

! A variable of data type char stores a single character.

! Example
char let ter;

let ter = ' a' ; // note the single quotes

! To print a variable of type char, use the % c conversion
specif icat ion w ithin the format st ring.

if (let ter != ' b')
print f (" let ter has the value % c\n" ,let ter);

2-18Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Debugging

! Types of Errors:

- Compilation Errors (Syntax Errors)
print it (" hello"); // misspelled keyw ord
x := x + 3 ; // w rong assignment symbol
a = (b + 1 /3 // missing right parenthesis
x + 3 = 5 ; // expression on lef t side of assignment
print f (" error") // missing semicolon

- Execution Errors:
An error detected once the program is running

a) uninit ialized variables used in assignment statements
 x = x + 5 ; // w here x w as never init ialized

b) divide by zero
y = (x + 25)/0 ;

- Logical Errors:
Normally, the hardest type of error to catch.
The program may run w ithout any execut ion errors, but

the result is w rong!

! Find the Compilation Errors:
void main()
{

double x,y;
print (" Grade Point Average\tValue of Formula\tStatus\n");
for (x = 0 .00 ; x < = 4 .00 ; x = x + 0 .50) {

y = x * x * x + 7 * x - 1) / (x * x - (x + 5) / 3)
print f (" % f \t \t% f" ,X,Y);
if (y > = 0) print f (" \t \tAdmit ");
print f (" \n")

}
}

2-19Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Standard Input/Output Streams

! C has three standard I/O st reams:
- stdin

The standard input st ream (stdin) is associated w ith the
keyboard. Unless specif ied otherw ise, all input to your
program comes f rom the keyboard.

- stdout
The standard output st ream (stdout) is associated w ith the

monitor. Unless specif ied otherw ise, all output f rom
your program goes to the monitor.

- stderr
The standard error st ream (stderr) is associated w ith the

monitor. You must explicit ly send output to stderr. It is
not automat ic.

2-20Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Files

! A file is a collect ion of data (usually stored on a disk.)

! An input file contains items for input to the program (i.e.,
items you might otherw ise type in f rom the keyboard during
interact ive data ent ry).

! An output file contains items output f rom your program (i.e.,
items you might otherw ise have sent to the screen).

! Data Type FILE * :
- A file pointer is used to access a f ile f rom a C program.
- A f ile pointer has data type FILE * .
e.g.;

FILE * infile;
FILE * changes;
FILE * outfile;
FILE * printer;

2-21Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Opening and Closing a File

! Before a f ile can be accessed f rom a C program, it must be
opened. A f ter using the f ile, it must be closed before
terminat ing the program.

! Syntax to Open a File:
filepointer = fopen(filename,mode);

w here filename is a st ring represent ing the f ile to be opened.

! Mode Settings:
" r" - The f ile is opened for reading. The f ile should already

exist .
" w " - The f ile is opened for w rit ing. If the f ile does not exist ,

it w ill be created. If the f ile exists, It w ill be opened to the
beginning of the f ile. (Any w rit ing w ill overw rite w hat is
already in the f ile.)

" a" - The f ile is opened for w rit ing. If the f ile does not exist ,
it w ill be created. If the f ile exists, It w ill be opened at the
end of the f ile. Any w rit ing w ill appended to the end of the
f ile.

! Examples:
inf ile = fopen(" let ter.dat " ," r");
changes = fopen(" c:\\hw \\changes.dat " ," r");
out f ile = fopen(" b:new f ile.out " ," w ");
printer = fopen("prn"," w "); // opens the printer for output

! Syntax to Close a File:
fclose(filepointer);

fclose(inf ile);
fclose(changes);
fclose(out f ile);
fclose(printer); // closes the printer (prn)

2-22Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

Output Using fprintf()

! fprintf() Syntax:
fprint f(destf ile," format_string" ,< optional_list_of_variables>);

! Examples:
FILE * out f ile;
FILE * printer;
int num = 5 ;

out f ile = fopen(" b:new f ile.out " ," w ");
printer = fopen(" prn" ," w ");

fprint f (out f ile," Output of My Program\n");
fprint f (printer," The number is % d\n" ,num);
fprint f (stdout ," The number is % d\n" ,num);

fclose(out f ile);
fclose(printer);

 NOTE: DO NOT OPEN OR CLOSE stdout

2-23Copyright © December 20, 2004 by Chaim Ziegler, Ph.D.

! Example:
/* program prob2
 * create a table to evaluate a formula y = f (x)
 * /
include < stdio.h>
void main()
{

double x,y;
FILE * out f ile;

out f ile = fopen(" b:prob2.out " ," w ");
// out f ile = stdout ; //un-comment for test ing pgm

fprint f (out f ile," \t \t \tTable of Funct ion Values\n\n");
fprintf(outf ile," Grade Point Average\tValue of Formula\tStatus\n");
for (x = 0 .00 ; x < = 4 .00 ; x = x + 0 .50) {

y = (x * x * x + 7 * x - 1) / (x * x - (x + 5) / 3);
fprint f (out f ile," % f \t \t% f" ,x,y);
if (y > = 0)

fprint f (out f ile," \t \tAdmit ");
fprint f (out f ile," \n");

}
fprint f (out f ile," \nThe table is f inished!\n");

fclose(out f ile);
}

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23

