Algorithms

Assignment: Analysis of Algorithms

Name: ..

Id: ...

Grade

Good Luck!
1. Rearrange the following 20 functions in a decreasing order of their growth:

\[
\begin{align*}
\log_2(n) & \quad 3^n & \quad n^2 & \quad \sqrt{n} & \quad \frac{n}{\log_2(n)} \\
 n^3 & \quad n! & \quad n & \quad 1000^n & \quad n(\log_2(n))^2 \\
 n^{1000} & \quad n^n & \quad n^{1/1000} & \quad 2^n & \quad (\log_3(n))^3 \\
 n^{1/3} & \quad n \log_2(n) & \quad 1 & \quad (\log_2(n))^2 & \quad \log_2 \log_2(n)
\end{align*}
\]
2. Let \(P \) be a problem. The worst-case time complexity of \(P \) is \(O(n^2) \). The worst-case time complexity of \(P \) is also \(\Omega(n \log n) \). Let \(A \) be an algorithm that solves \(P \). Which subset of the following statements are consistent with this information about the complexity of \(P \)? Justify your answer.

(a) \(A \) has worst-case time complexity \(O(n^2) \).
(b) \(A \) has worst-case time complexity \(O(n^{3/2}) \).
(c) \(A \) has worst-case time complexity \(O(n) \).
(d) \(A \) has worst-case time complexity \(\Theta(n^2) \).
(e) \(A \) has worst-case time complexity \(\Theta(n^3) \).
3. Find the exact solution to the following recursive formulas. You may guess the solution and then prove it by induction.

(a) $T(1) = 1$ and $T(n) = T(n - 1) + 3$.

(b) $T(1) = 1$ and $T(n) = T(n - 1) + (2n - 1)$.

(c) $T(1) = 3$ and $T(n) = 3T(n - 1)$.
4. Find the exact solution to the following recursive formulas. You may guess the solution and then prove it by induction.

(a) \(T(0) = 1 \) and \(T(n) = 1 + \sum_{i=0}^{n-1} T(i) \).

(b) \(T(0) = 1 \) and \(T(n) = b + \sum_{i=0}^{n-1} T(i) \).

(c) \(T(0) = a \) and \(T(n) = b + \sum_{i=0}^{n-1} T(i) \).
5. Solve the following recursive formulas using the master theorem. Assume that $n = 2^k$ for some integer k for parts (a) and (c) and that $n = (4/3)^k$ for some integer k for part (b).

(a) $T(1) = 1$ and $T(n) = 8T(n/2) + n^2$.

(b) $T(1) = 1$ and $T(n) = T(3n/4) + 10$.

(c) $T(1) = 1$ and $T(n) = T(n/2) + \sqrt{n}$.
6. What value is returned by the following functions? Express your answer as a function of \(n \).

Give the worst-case running time of the following functions using the \(O, \Omega, \Theta \) notations.

(a) \(f(n) \) (* \(n > 0 \) is an integer number *)
\[
\begin{align*}
 r &:= 0 \\
 &\text{for } i := 1 \text{ to } n - 1 \text{ do} \\
 &\quad \text{for } j := i + 1 \text{ to } n \text{ do} \\
 &\quad\quad \text{for } k := 1 \text{ to } j \text{ do} \\
 &\quad\quad\quad r := r + 1 \\
 &\text{return}(r)
\end{align*}
\]

(b) \(f(n) \) (* \(n > 0 \) is an integer number *)
\[
\begin{align*}
 r &:= 0 \\
 &\text{for } i := 1 \text{ to } n \text{ do} \\
 &\quad \text{for } j := 1 \text{ to } i \text{ do} \\
 &\quad\quad \text{for } k := j \text{ to } i + j \text{ do} \\
 &\quad\quad\quad r := r + 1 \\
 &\text{return}(r)
\end{align*}
\]

(c) \(g(x) \) (* \(x > 1 \) is a real number *)
\[
\begin{align*}
 r &:= 0 \\
 &\text{while } x > 1 \text{ do} \\
 &\quad x := x/3 \\
 &\quad r := r + 1 \\
 &\text{return}(r)
\end{align*}
\]
7. An input file contains all the integers from 1 to \(n \) exactly once except one missing integer. The \(n - 1 \) integers may appear in any order. The goal is to find the missing integer. A solution may \textbf{scan} the input only \textbf{once}.

(a) Describe a simple solution that requires \(O(n) \)-bits memory.

(b) Describe a “tricky” solution that requires \(O(\log n) \)-bits memory.