The medical sector is one which employs and depends on “multidisciplinary” service sectors. Hence errors can occur across a number of disciplines which contribute to the medical sector. In earlier work funded by CUNY 32-34 we classified all of the medical errors discovered in our literature study into categories according to the type of error which was deemed to have been involved (Kopec, Kabir, Reinhart, et. al, 2003). Some of those categories, in addition to being classified by cause, involve classification by whether or not "a human role" was responsible for that error. A subsidiary result of our earlier work is that we have developed a database of over 100 papers in the area of medical errors and this can now serve as a repository for other researchers interested in the field.

In our analysis we have observed that administrative errors, diagnostic errors, errors in treatment procedures, and all categories of medication error are mainly due to "the human role". Experimental studies in several different hospitals indicate that the application of physician’s order entry systems, computer-based clinical decision support systems, computerized alert systems, smart cards for patient information, for example, can reduce medical errors by a considerable amount. Studies have shown diverse ranges of error reduction, but the minimum expected level is at least a 50% reduction in errors.

One system under development is an Expert System to distinguish “Headaches” from “Migraines” developed in conjunction with a practicing neurologist. A web-based application using the Expert System Shell CLIPS has been developed and we are in the process of gathering experimental data. Another proposed system is a SmartBook in JavaScript to provide all the necessary information to assist this study.

Another way to approach the study of medical errors is to consider where most errors are prone to occur. There is significant evidence (Lynn and Goldstein, 2003) to suggest that medical errors will most frequently occur in patients with chronic and terminal illnesses – for this is the environment where most people will come into contact with health care systems. Case-Based reasoning is an AI technique which tries to exploit the similarities of two situations and match decision-making to the best-known precedent cases. We will attempt to develop a Case-Based Reasoning system which will employ this technique to improve palliative care (Kolodner, 1998).
PSC-CUNY 35 RESEARCH AWARD PROGRAM PROPOSED BUDGET

<table>
<thead>
<tr>
<th>Name: Danny Kopec</th>
<th>1st year</th>
<th>2nd Year</th>
</tr>
</thead>
</table>

Principal Investigator Academic Year Salary $________________
(only for those requesting summer salary)

<table>
<thead>
<tr>
<th></th>
<th>1st year</th>
<th>2nd Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Principal Investigator</td>
<td>(summer salary-maximum $3,000)</td>
<td>Requested Amount</td>
</tr>
<tr>
<td>Fringe Benefits 22%</td>
<td>(5400)</td>
<td></td>
</tr>
<tr>
<td>Release Time</td>
<td>($3,000)</td>
<td></td>
</tr>
<tr>
<td>Fringe Benefits 28%</td>
<td>(5955)</td>
<td></td>
</tr>
<tr>
<td>Research Staff</td>
<td>$7000</td>
<td>(5410)</td>
</tr>
<tr>
<td>Fringe Benefits Part Time 8%</td>
<td>$560</td>
<td>(5940)</td>
</tr>
<tr>
<td>Equipment</td>
<td>$350</td>
<td>(7900)</td>
</tr>
<tr>
<td>Expendable Supplies/Small Equipment</td>
<td>$90</td>
<td>(6200)</td>
</tr>
<tr>
<td>Travel</td>
<td>(mode, destination, & estimated per diem)</td>
<td></td>
</tr>
<tr>
<td>Domestic</td>
<td>$900</td>
<td>(6910)</td>
</tr>
<tr>
<td>Foreign</td>
<td>$920</td>
<td>(6920)</td>
</tr>
<tr>
<td>Local</td>
<td>$930</td>
<td>(6930)</td>
</tr>
<tr>
<td>Payment to Subjects</td>
<td>$940</td>
<td>(7020)</td>
</tr>
<tr>
<td>Manuscript Prep/ Publication</td>
<td>$950</td>
<td>(8040)</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Amount Requested</td>
<td>$8,000</td>
<td></td>
</tr>
</tbody>
</table>

BUDGET JUSTIFICATION:
Please justify all major items, but limit to space provided. Also, supply a job description for all Research Assistants.

1. The proposed project is a continuation (at a more advanced level) of earlier research in medical errors under CUNY-32 through CUNY-34. Mr. Gene Shagas has come to Brooklyn College in pursuit of an MS degree in Information Systems with a very strong technical background coupled with experience in health care quality management.

 He has developed the Migraines vs. Headaches Expert System using the CLIPS expert system shell. Some of the technologies used here include a GUI and Presentation Layer in HTML and Javascript, Application and Data Manipulations layers in PERL Script and C. Further data collection in XML format. Multilingual aspects of the system are addressed through the use of XSLT (Sun Microsystems 2003c).

 Mr. Shagas will work 175 hours (at $20/hour) in the completion of these systems. He is in dire need of raw data to complete this research, which is also part of his MS Thesis.

2. Suzanne Tamang is pursuing an MS Degree in Computer Science and Health Science.
She has experience working in field of palliative care which couples nicely with her thesis topic “Improving Quality of Care at the End of Life: an information systems approach to reducing medical errors. Ms Tamang will be developing the Case-Based Reasoning component of our proposed research. She will be working 200 hours at $17.50 per hour on this project.
EDUCATION

<table>
<thead>
<tr>
<th>INSTITUTION</th>
<th>DEGREE</th>
<th>YEAR</th>
<th>FIELD of STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>University of Edinburgh</td>
<td>PhD</td>
<td>1983</td>
<td>Machine Intelligence</td>
</tr>
<tr>
<td>Dartmouth College</td>
<td>BA</td>
<td>1975</td>
<td>Psychology Modified with Mathematics</td>
</tr>
</tbody>
</table>

RESEARCH & PROFESSIONAL EXPERIENCE: Summarize research and professional experience which is pertinent to this proposal. List in chronological order the titles and complete references to publications in the past three years and to representative earlier publications important to this application (Use an asterisk to identify publications which resulted from PSC-CUNY grant supported work). DO NOT EXCEED THIS PAGE.

My research interests have focused in three areas: intelligent tutoring systems, experimental computer science/cognitive science via computer chess, and technological mishaps. These domains are related to more specific problems in a number of artificial intelligence-related domains including problem solving, knowledge-based systems, human-computer interaction, expert systems, natural language processing and the management of interdisciplinary teams.

Computers are pervading nearly every aspect of human life. Their use in complex systems and the real possibility of catastrophic accidents (especially where human error may be involved) must be addressed. In 1982, I co-authored a report with Professor Donald Michie, (my then Ph.D. thesis supervisor at the University of Edinburgh in Scotland and renowned leader in the domain of knowledge engineering and machine learning) to the Commission of the European Communities entitled: Mismatch Between Machine Representations and Human Concepts: dangers and remedies. The various forms of computer malfunction and accidents involving computers and complex systems were subsequently addressed in two papers: (1) Technology Transfer Crises in the 1980's: mishaps at the man-machine interface; (2) Societal and Technological Problems of Computers (with Q. Jiang). Below are presented the full references for publications and works I have participated in that are relevant to this domain of research.

Relevant Texts
NAME: Danny Kopec

OTHER FUNDING:

TOTAL NUMBER OF PRIOR PSC-CUNY AWARDS: 3

<table>
<thead>
<tr>
<th>DATE:</th>
<th>TITLE</th>
<th>NEW or RENEWAL</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/00-6/01</td>
<td>Diagnosis and Design of Complex Systems Software</td>
<td>New</td>
<td>$4400.00</td>
</tr>
<tr>
<td>9/01-6/02</td>
<td>Diagnosis and Design of Complex Systems Software</td>
<td>Renewal</td>
<td>$4400.00</td>
</tr>
<tr>
<td>9/03-6/04</td>
<td>Software Technology: From SmartBooks to Artificial Intelligence Towards the Reduction of Medical Errors</td>
<td>Renewal</td>
<td>$3200.00</td>
</tr>
</tbody>
</table>

EXTERNAL RESEARCH GRANT/AWARD PROPOSALS
(over past five years; indicate funded/not funded)

Place an asterisk next to awards that resulted from PSC-CUNY funding

<table>
<thead>
<tr>
<th>DATE</th>
<th>TITLE</th>
<th>FUNDING SOURCE</th>
<th>AMOUNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 2000</td>
<td>Evaluation and Design of Complex Systems Software</td>
<td>NSF/ITR (Not Funded)</td>
<td>$369K</td>
</tr>
<tr>
<td>Dec 2000</td>
<td>Evaluation and Improvement of Medical Systems Software</td>
<td>CISDD/CUNY (Not Funded)</td>
<td>$4K</td>
</tr>
<tr>
<td>Jan 2001</td>
<td>DAGPAL: A Declarative Graphics Programming Language and its Application (with Neng-Fa Zhou et. al)</td>
<td>NSF/ITR (Not Funded)</td>
<td>$500K</td>
</tr>
<tr>
<td>Jan 2001</td>
<td>SmartBooks: a generic methodology to facilitate delivery of post-secondary education</td>
<td>FIPSE (Preposal)</td>
<td>$74,985</td>
</tr>
<tr>
<td>July 2002</td>
<td>ScienceTutor: On-line Tutoring to Aid Retention in Gateway Science</td>
<td>NSF 02-043 (Funded, Feb. 2003)</td>
<td></td>
</tr>
</tbody>
</table>
References

Bates D.W., MD; Leape L.L., MD; Cullen D.J., MD. Effects of Computerized Physician Order Entry and a Team Intervention on Prevention of Serious Medication Errors JAMA October 21, 1998 Vol 280 No 15.

Nordenberg, T. Make No Mistake. FDA Consumer 2000;14:13-18

Robert, A, MD, MS, Gollihare, B., MS, RN., Thomas, A. A Computer Alert System to Prevent Injury From Adverse Drug Events JAMA; October 21, 1998 vol 280 No 15

Yetman R., MD, Preventing Misuse Errors in Health Care Organizations. Vol. 8, No 8 August 2001 JCOM.
Applications of Artificial Intelligence-based Methodologies for Reduction of Medical Errors

Introduction

The Migraines and Headaches Application

Headaches in a variety of forms are one of the most common complaints presenting to the clinician. The International Headache Society has proposed a classification of headache; but these rules to diagnose Migraine seem to be oversimplified (Olesen 1998, Troost 2002). We decided to create an application to distinguish between Migraine and Headache this using more sophisticated rules and future implementation of the Expert System (CLIPS). CLIPS is a productive development and delivery Expert System tool which provides a complete environment for the construction of rule and/or object based expert systems (GHG Internet Services 2003).

The problem we're working on is to create an application to distinguish between Migraines and Headaches. We started from a simple rules implementation. The strategic goal, however, is to create a self-learning program, based on an Expert System, which can collect and analyze all patient data.

The application is intended primarily for physicians, but patients could also use a simple version. This could be both an online and stand-alone application. Once the point of a "self-learning program" is achieved, the online approach is better for new data collection and rules updating.

Paper forms are not required, but it could be an option for people with no computer and/or Internet. The program itself can dynamically generate the Forms.

GUI and Presentation Layer are written on Hypertext Markup Language (HTML) and JavaScript, while the Application and Data Manipulation layers are written on Common Gateway Interface (CGI) Perl script. As of today, Data collected in Extensible Markup Language (XML) format in a file for the future analysis. The Java API for XML Processing (JAXP) supports processing of XML documents using Document Object Model
(DOM), Simple API for XML (SAX), and Extensible Stylesheet Language Transformations (XSLT) (Sun Microsystems 2003).

We can use Java and XML with Apache open source products to build Simple Object Access Protocol (SOAP) client and server components on the Internet. SOAP is a request/response remote procedure call (RPC) protocol based on HTTP and XML. SOAP, a simple alternative to the request/response protocols DCOM and CORBA/IIOP, has the advantage of being based on HTTP, thus providing a better chance that packets will get through firewalls and proxy servers separating client and server. Java and XML can be used with Apache open source products to build SOAP client and server components on the Internet (Sun Microsystems 2003). Using such Data Exchange also important to address the "serious issue of cyber-security". The nature of the Microsoft platform that dominates every desktop everywhere is such that its dominance, coupled with its insecurity, cannot be ignored and is a matter of corporate and national policy. The best solution is to adopt a combination of different computer systems that will reduce the risk of a single security incident crippling a company or a government agency, or, “having more than one operating system running inside your enterprise would be a substantial improvement” (Stevenson, 2003).

The Expert System Shell CLIPS Installation and Implementation

CLIPS is a productive development and delivery Expert System tool which provides a complete environment for the construction of rule and/or object based expert systems (GHG Internet Services, 2003). The data can be inserted into this Expert System in several ways.

Direct data entry using existing interface (GHG Internet Services, 2003).

Web-based interaction with CLIPS.

CGI program handles the output from the HTML Migraine form page. The program will be sent the form data when the user clicks on the "Submit" button in the forms page. CGI programs can be written in almost any language that can process text data from standard input and send text data to standard output. Since CLIPS is written on C programming language, we recommend CGI program to be written in C as well.

This is the URL to the latest Form 1.1.3. revision:

http://acc4.its.brooklyn.cuny.edu/~gshagas/migraine_rev113.html
The Migraine Data can be analyzed using Expert system tools. The enclosed proof of concept link shows the connection CLIPS-to-HTML is possible.

http://acc4.its.brooklyn.cuny.edu/~gshagas/clips.html

Java Server Pages and Applets have some advantages over CGI.

A Case-based Reasoner for Palliative Care

Case-based reasoning (CBR), is a proven artificial intelligence (AI) technique that has been used effectively in the medical field. Successful systems that employ CBR techniques include: CASEY (Koton, 1988), for heart failure diagnosis, FLORENCE (Bradburn and Zeleznikow, 1993), a care planner for nurses, and MEDIC (Turner, 1998) a diagnostic reasoner on the domain of pulmonology.

CBR uses an explicit database of problem solutions to address new problem-solving situations. The general rules are created by selecting expert cases. This approach can reflect the results of previous successes, while
avoiding past errors. The underlying idea is the assumption that similar cases have similar solutions. Although this may not always be true, this tenant holds true for many aspects of the medical domain.

In the medical domain two knowledge types can be found: explicit or formalized knowledge and implicit or operative knowledge (Montani and Bellazzi, 2002). The formalized knowledge is the medical information that is found in books and clinical guidelines. This type of knowledge is can be represented in taxonomies or rules. The operative knowledge consists in individual expertise, organizational practices and past cases. CBR has proved to be a well suited paradigm for managing knowledge of the operative or implicit type. This project will discuss the implementation of CBR as a problem-solving strategy for the management of patients with chronic and terminal illness.

Chronic and terminally ill patients are disproportionately affected by medical errors. Three key factors suggest that make individuals at the end of life more vulnerable to medical errors and resulting adverse events (Meyers and Lynn, 2003):

1) These patients have more frequent interactions with the health care system, including increased exposure to medication and medical procedures.
2) Errors are more harmful to the patients' health, because of their poor health status.
3) They are exposed to pervasive patterns of care that run counter to well-substantiated evidence-based practices.

A focus on improving shortcomings affecting these vulnerable patients needs to be addressed by the national research agenda. This population is most in need of safe, reliable, coordinated care. Currently, health care and community services are not organized to meet the needs of the growing population of people facing a long period of progressive illness and disability before death.

A growing number of programs have been recognized for success in improving end of life care; these programs support evidence-based practices (Lynn and Adamson, 2003). Important outcome measures of these programs include: new approaches to pain-management, advanced-care planning, palliative-care consultation, and family
support (Meyers and Lynn, 2001). These services reduce medical errors by preventing unwanted and aggressive treatments, providing disease management, improving patient safety and coordinating health care delivery.

Information systems that can support evidence-based practices have the potential to reduce medical error(s) and improve patient outcomes. These applications can also be used to facilitate the classification of medical error data, and understand the complexity of the error process. This project will explore and discuss the advantages and limitations of CBR to achieve these goals.

References

This page was last updated July 29, 2003

Troost, Todd M.D., Migraine and other Headaches, Wake Forest University School of Medicine (2002) http://imigraine.net/migraine/intro.html
