Welcome

I. We want your undivided attention.
II. We want you to have some fun.
III. We want you to learn some basic information about programming and programming languages.
IV. We want to give you the skills to create your own computer games.
Questions:

1. What is a language?
2. What is a program?
3. What is a programming language and how do they work?
4. What is an IDE (integrated development environment)?
5. What makes a game fun?
6. What skills do you need to have to create a computer game?
Programming Languages

I. Allow us to "talk" to a computer, in a language that we can understand.
 I. Computers only understand binary (0,1).
 II. Modern (high-level) languages allow us to write code in a way that we understand.

II. Require a well-defined syntax and semantics:
 I. Syntax -> Refers to the rules of grammar, word order and punctuation that must be used. A "syntax error" is usually a punctuation error.
 II. Semantics -> Refers to the meaning of words that are included in a language. Some words have set meanings, others can be changed (variable mouseX).
III. Allow us reuse and share code.
 I. No need to create code to handle mouse input if someone has already created a function to do that.
 II. A library is a collection of functions and variables that can be reused when creating a new program.

IV. Fall into different paradigms (types):
 I. Functional, Logical, Imperative, Procedural and Object-Oriented approaches to programming.
 II. If you already know one language of a particular type it's easier to learn other languages of that same type.

Note: This is true for spoken languages as well. If you know Spanish it’s easier to learn French, Portuguese or Italian. All these languages use similar vocabularies (semantics) and almost the same grammar (syntax).
Scratch

Scratch is an IDE (Integrated Development Environment) application. An IDE is a program that allows users to create, run and debug other programs.

Users create programs in Scratch using an imperative, procedural, object-oriented programming language that has very simple syntax*.

* Don't worry, all of these terms will be made clear to you.
Let's take a break, and play some games in Scratch.

Your instructor will show you how to:

1. Start Scratch
2. Load a program
3. Start and Stop a program
4. Find specific parts of the Scratch interface (a picture of the interface is included on the next slide)
Scratch Interface

- **Scratch Interface**
- **SPRITE ROTATION STYLE**
- **CURRENT SPRITE INFO**
- **SHARE**
- **SAVE LANGUAGE**
- **BLOCKS PALETTE**
 Blocks for programming your sprites.
- **SCRIPTS AREA**
 Drag blocks in, snap them together into scripts.
- **TOOLBAR**
- **TAB**
 Edit scripts, costumes, or sounds.
- **VIEW MODE**
 Change to large or small stage view.
- **PRESENTATION MODE**
 Present your project.
- **GREEN FLAG**
 A way to start scripts.
- **STOP SIGN**
 Stops all scripts.
- **STAGE**
 Where your Scratch creations come to life.
- **MOUSE X-Y DISPLAY**
 Shows location of cursor.
- **NEW SPRITE BUTTONS**
 Create a new character or object for your project.
- **SPRITE LIST**
 Thumbnails of all your sprites. Click to select and edit a sprite.
Why use Scratch?

1. Scratch is FREE!
2. Simple development environment.
4. Large library of functions.
5. Can be used to teach basics of programming in 3 important paradigms.
6. Can be used to create ANY simple computer game.
1. Scratch is FREE

• Scratch is developed by the Lifelong Kindergarten group at the MIT Media Lab, with financial support from the National Science Foundation, Microsoft, Intel Foundation, Nokia, and MIT Media Lab research consortia.

• Scratch is free software and will run on Windows, Mac and Linux machines.

• You can download Scratch here: http://scratch.mit.edu/

• The Scratch website has many helpful tutorials as well as a forum for asking questions and getting help.
2. Simple Development

1. Scratch requires very little typing in order to create programs.
2. Visual code creation using drag and drop.
3. Simplified Syntax

1. No missing semi-colon problems.
2. Code blocks can only fit together in pre-defined way.
4. Large library.

1. Over 100 predefined functions and limited ability to make more.
2. Functions cover vast majority of things that you would want a sprite (object) to be able to do in a game.
5. Basics of Programming

• Just like spoken languages programming languages can be categorized into certain types (or paradigms).

• 3 of the most popular programming paradigms are:
 A. **Imperative** -> A 'smart' list.
 B. **Procedural** -> Making phone calls.
 C. **Object Oriented** -> Programming with objects.
A. Imperative Programming
"a smart list"

1. The imperative paradigm is like giving the computer a list, which tells it step-by-step what to do.

2. To be "smart" your list needs 3 things:
 i. **Sequence** -> A predefined order in which to process information. *(English vs. Hebrew)*
 ii. **Selection** -> The ability to make a choice. The "IF" statement.
 iii. **Repetition** -> The ability to repeat an action. The "WHILE" statement.
i. Sequence

- All "scripts" processed from top down.
- 4 possible start conditions, 3 end.
ii. Selection

- If, If-else and wait_until functions.
iii. Repetition

- Variety of functions including `repeat_until`.
B. Procedural Programming
"making phone calls"

• The procedural programming paradigm is based upon the concept of the “procedure call”: the ability to “send a message” to another section of a program.

• Procedural programming allows us to create sections of code that can be reused over and over.
Broadcast

Scratch allows users to send "broadcasts" which can activate other scripts who are listening for a particular broadcast.

This example is trivial. But you could easily have a procedure with a much more complicated function. And coding it this way would mean you only have to write the procedure once. Then call it when you need it.
C. Object-Oriented

1. OO programming is an extremely important programming paradigm.

2. Scratch is not true OO programming, but good example of basic concepts:
 - Creating programs that are composed of **interacting objects**.
 - These objects have associated **properties** and **functions**.
Object-Oriented (cont)

3. **Objects** in Scratch are called "**Sprites**".

4. **Properties** of Sprites include:
 - Location
 - Look
 - User defined properties (variables).

5. **Functions** of Sprites include:
 - Move
 - Make Sound
 - Detect Collision
Sprites

Found in the lower right corner of the screen.

Click on them to select them and change contents of main window.
6. Create ANY simple game.

- At this time Scratch does not support Vector Graphics, Multi-threading, and library creation.
- Despite these restrictions it is still possible to create some very interesting and exciting applications/games with Scratch.
- ANY simple arcade game or older console game can be recreated in Scratch.
- Many simple browser-based games (Flash) can also be emulated with Scratch.
Example Games

Nuclear HenHouse

Traffic Jam

Space Bounty

Super Mario

Zelda

Donkey Kong
More example games

Within Scratch checkout:
• Projects/Games/BugsOnAPlate
• Projects/Games/MarbleRacer

http://scratch.mit.edu/
Note: With an account you can post your own games and projects on the Scratch website.
• http://scratch.mit.edu/projects/MrMeyer/1111951
• http://scratch.mit.edu/projects/MrMeyer/1111924
• http://scratch.mit.edu/projects/MrMeyer/1111845

http://bridges.brooklyn.cuny.edu/collegenow/scratch.htm
Here you will find a host of tutorials, as well as templates to help you create games in several common genres.
Are you an Artist? (not necessarily a 'gamer')

Using Sketch you can develop, movies, animations and visual storyboards.

What's your story?
Who are the characters?
What's the conflict?
What do you want your audience to feel?

What objects would you need to create?
What would their properties/functions be?
Artists

Checkout:

/Projects/Animation
DayDream

/Projects/Stories/
Stargate

/Projects/SpeakUp
AgainstSpammers
The End