Overview

This assignment asks you to write several applets that draw various graphic images--they progress in difficulty--the earlier ones being easier. You are to code at least two (2) of the applets whose displayed images are presented below.

The Chinese Checkerboard and It's Implementation

First, however, we present a plain Chinese checkerboard:

This is quite a bit more involved than a simple checkerboard in that it is not quite as symmetric. Many of the techniques shown are useful in the more general context of drawing images, so make sure you understand its code.
import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class ChineseCheckerboardApplet extends Applet {
 public void init() {
 add(new ChineseCheckerboard(this));
 }
}

class ChineseCheckerboard extends Canvas {

 public ChineseCheckerboard(Applet parentApplet) {
 setSize(600, 600);
 }

 public void paint(Graphics g) {
 for (int i = 0; i < holesInRow.length; i++)
 drawRow(g, i);
 }

 void drawRow(Graphics g, int row) {
 int centerX = getWidth() / 2; // figure out center of display
 int startY = 0;
 int numHoles = holesInRow[row];
 int rowWidth = numHoles * holeDiam + (numHoles-1) * holeGap;
 //row width is number of holes + appropriate number of spacing’s
 int startX = centerX - rowWidth / 2;
 // Starting horizontal position is centerX less half the row width
 int y = startY + row * (holeDiam + holeGap); // Vertically position based upon which row you're displaying
 g.setColor(Color.BLACK);
 for (int i = 0; i < numHoles; i++) {
 g.fillOval(startX + i * (holeDiam + holeGap), y, holeDiam, holeDiam);
 g.drawOval(startX + i * (holeDiam + holeGap), y, holeDiam, holeDiam);
 }
 }

 final int holeDiam = 15;
 final int holeGap = (int)(holeDiam * 0.25);

 // Here's the array containing the number of holes per row
 int [] holesInRow = {1, 2, 3, 4, 13, 12, 11, 10, 9, 10, 11, 12, 13, 4, 3, 2, 1};
}
The Assignment's Applets

The sections that follow present images of applets that you are to implement-- again, you need only do two, but if this stuff interests you, please feel free to do more. The applets increase in complexity in order of appearance.

When implementing the applet, don't worry about size or position relative to the applet's window(i.e., you don't have to worry about getting the size or position of the drawn elements exactly the same as mine-- what I'm interested is their relative placement within the applet). I happened to use a Canvas in all cases (as you can see with the Checkerboard and ChineseCheckerboard applets) -- it just proved convenient but if you want to you could do the painting directly on the applet's surface instead.

A Loaded Checkerboard

This one is fairly straightforward- simply take the checkerboard we presented in class and add the appropriate circles by adding a fillOval to the paint method. Of course, in order to get the right pattern, you can't invoke fillOval for every square-- and you've got to distinguish between the squares that have red checkers and those that have brown checkers.
The Mancala Board

Mancala is an ancient African game played with pits and stones. This applet displays the empty Mancala board. Notice the symmetry of the board-- the spacing’s and rows of smaller pits flanked by the larger pits.

The Chinese Checkerboard Sequence - #1
In this board, the vertical edges are colored red. The logic to achieve that is not all that hard.

Smiley

While you might not have anything to smile about by this point, these little guys do. To get them you should first solve the problem of drawing a SINGLE smiley and make that into a method that can be passed a position \((x, y)\). `paint` can then use one or more loops to call your smiley method with different positions.

The smiley itself is a circle for the head, a pair of well-placed ovals for the eyes (taller than wide), and an arc for the mouth. Look at `drawArc` in the `Graphics` class' API - if you can't figure it out, either ask me, or use a circle/oval for the mouth-- but if you do don't forget to call it `Laughy` instead :)
The Geometric Series - #1

If you did the loaded checkerboard, this one should be a cinch (it also involves code similar to the solved Chinese checkerboard at the top of the lab), and if so, you'd be done-- see, it IS possible to do this lab. But now that you know there's a light at the end of the tunnel, I'm hoping you'll try some of the more challenging ones.

The Chinese Checkerboard Sequence - #2

This one requires you to draw lines in the spacing gap between the rows-- I went halfway in the gap. Again, not too bad-- much harder would be to draw diagonal lines.
The Chinese Checkerboard Sequence - #3

This one is a bit nasty-- don't even bother trying it until you've done #1 in this sequence. You COULD conceivably set up an array of Color objects for each row with an entry for each hole in the row stating its color (black or red), but that's painful and doesn't scale well (imagine a HUGE board of thousands of rows). The problem is how to determine which ones should be painted red? (Hint-- the red ones are those not surrounded on all sides by other holes.)

The Geometric Sequence - #2

This one is quite a bit harder than #1. Placing a circle in a square is a snap (that's what you did in #1 and the loaded checkerboard)-- going in the other direction-- a square in a circle is a whole different ballgame. You'll need a bit of geometry as well as the Pythagorean Theorem (remember that?-- the formula for a hypotenuse?) Sit down with some paper and go to work-- draw the
square in the circle. Remember that the circle is drawn by specifying an outer square (like the one in #1 or the Loaded Checkerboard). See if you can figure out the relationship between the inner and outer square.

The Geometric Sequence - #3

If you were able to do #2 congratulations-- and this one is simply putting it into a loop that draws the square outside the circle, and repeats the whole process.
The Weave

While it's hypnotically beautiful, try this and you'll start ripping your hair out. Some hints-- how did those unwoven strips get there?... also, think of the checkerboard-- go back and make a red and blue checkerboard and then-- MIND THE GAP!

How and What to Submit

- When you are COMPLETELY done with this assignment, send an email to me in the following format:
 - The subject should contain *** CIS 3120 *** Assignment #10
 - In the body of the email, please include (in addition to your name) the URL to the applets and the location of the directory for the assignment’s sources (in your private directory).