Computer Science, Graduate Center, CUNY

Modeling Adaptive Autonomous Agents

by Pattie Maes

Jinzhong Niu

September 22, 2005
Outline

- Definition
- Guiding Principles
- Examples
- Overview of State of the Art
What is an autonomous adaptive agent?

Definition

An **agent** is a system that tries to fulfill a set of goals in a complex, dynamic environment. This system possesses specific properties:

- **autonomous** — making decisions itself
- **adaptive** — able to improve over time with experience
- **effective** — successful at eventually achieving its goals

Jinzhong Niu: Modeling Adaptive Autonomous Agents, by Pattie Maes
In terms of the types of environments it inhabits, an agent can be:

- physical robots, e.g. robot soccer players
- software agents, e.g. trading agents
- virtual physical robots, e.g. Lipson’s robots in the simulated environment
Traditional AI vs. autonomous agent

- isolated and often advanced competences vs. lower-level competences
 - top-down AI vs. bottom-up AI
 - e.g. a medical diagnosis system and a garbage collecting robot
- closed (typically through a human operator) vs. open (directedly situated in the environment)
- no time-constraints and one problem at a time vs. acting in a timely fashion and multiple goals simultaneously
- static knowledge structure vs. dynamic behavior-producing modules
 - knowledge-based AI vs. behavior-based AI
- once for all vs. developmental
Architecture for modeling autonomous agents

- autonomous agent research
 - principles and organizations
 - tools, techniques, and algorithms
- a table specifying which architecture are the most simple solution for a given class of agent problems?
Guiding Principles

Outline

- Definition
- Guiding Principles
- Examples
- Overview of State of the Art
Guiding Principles

Modelling agents in the context

- Build various functions in an integrated way rather than independently
- Take advantage of the world where the agents are situated
- Use the ability of learning to avoid the requirement of a perfect solution at the beginning (take time for incremental improvement)
- Seek help from the peers
Guiding Principles

Interaction dynamics can build complexity from simple components

- Simple **internal modules** that work together can lead to emergent functionality.
 - e.g. a wall-following robot

- **Simple atomic capabilities** together with **feedback mechanisms** can produce complex behaviors.

- Agents with **simple behaviors** can compose a social system that can exhibit advanced structures or functionality.
 - e.g. markets involving primitive trading agents

Benefits: more robust, flexible, and fault-tolerant than programmed, top-down organized complexity
Outline

- Definition
- Guiding Principles
- Examples
- Overview of State of the Art
Examples

- a mobile robot
 - traditional AI approach
 - autonomous agent approach
- an interface robot
- a scheduling system
Shakey: the ‘first electronic person’

Developed in 1969 by the Stanford Research Institute, Shakey was the first fully mobile robot with artificial intelligence. Shakey was named after its rather unstable movements.

- perception module
- environment model
- planning module
- execution module
Examples

The agent-based approach

- competence modules
 - recognizing and going through doors
 - wall following
 - obstacle avoidance
 - ...

- a simple arbitration scheme
Overview of State of the Art

Outline

- Definition
- Guiding Principles
- Examples
- Overview of State of the Art
Subproblems of modeling autonomous agents

- action selection
 - what actions should an agent take next so as to optimize the achievement of its goals
- learning from experience
 - how to improve the performance of action selection
Overview of State of the Art

Action selection — Difficulties

- resource limitations
- possibly incomplete and inconsistent information
- dynamic, unpredictable environment
- time-varying goals
- ...

Jinzhong Niu: Modeling Adaptive Autonomous Agents, by Pattie Maes
Action selection — Criteria

- goal guided
- real-time
- robust
- developmental
- adequately good
- ...

Overview of State of the Art
Action selection — Progress made

- **Hand-built, flat networks** requires the designer of the agent to solve the action selection problem from scratch by designing a set of reflex modules and arbitration mechanism.
 - hard to apply for new agents
 - hard to scale up
 - unable to deal with time-varying goals

- **Compiled, flat networks** automates the design of the arbitration mechanism.
 - requiring a specification of the goals and desired behaviors
 - limited capability

- **Hand-built, hierarchical networks** organize different competence modules in a more hierarchical way.
Overview of State of the Art

Action selection — open problems

▶ nature of goals (what kinds, how they change over time)
▶ scaling up by evolution or learning
▶ reusability
▶ understanding interactions’ contribution to emergent behaviors
▶ command fusion
▶ deadlock in decentralized architecture
▶ relationship between perception and action
Overview of State of the Art

Learning from experience — The problem

- aims to improve the action selection over time
- why learning needed?
 - hard to program
 - not realistic to reprogram due to break-down or environment change
- meaning of improvement
 - time or number of actions needed to reach the end goal decreases
 - average or discounted expected reinforcement received over time increases
Overview of State of the Art

Learning from experience — The problem (cont.)

- what action selection mechanism to be adopted
- how to learn (what to explore)
 - e.g. a fire-escaping mobile agent
- how to balance between exploration and exploitation (how to explore)
Overview of State of the Art

Learning from experience — Progress made

► what to learn
 ● arbitration network among different actions
 ● composite actions

► architectures
 ● Reinforcement learning systems learn how to map situations to actions maximizing the accumulated reward.
 ● Classifier systems are a special case of RL, which learn to evaluate classifiers that is used to choose actions.
 ● Model learners learn how actions map situations into other situations.
Learning from experience — Open problems

- scaling up
- more reasonable exploration strategies
- learning the set of primitive actions
- learning to perceive
- comparing individual learning with evolution
- ...

Overview of State of the Art
Thank you!