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Abstract

We examine some old and new paradoxes of probability, give a rough account
of probabilistic conditionals, and prove some new results about non-monotonicity in
probabilistic conditionals. It is well known that such conditionals are not monotonic
– a conditional which is true can become false when additional hypotheses are added.
We show that nonetheless, the conditionals are usually monotonic, in both finite and
countably infinite universes, or roughly speaking that we do not actually have to worry
about non-monotonicity in practice.

1 Probability & Paradox

Einstein famously said that God does not play dice. This attitude of his led to a certain

estrangement with Quantum Mechanics and even with Physics during the last years of his

life, otherwise marked by a close friendship with Kurt Gödel.

Einstein aside, probability is a puzzling phenomenon, for what exactly does it mean?

One supposedly unproblematic way to define it is via frequencies. To say that a coin is

fair, i.e., that the probability of heads is .5, can then be interpreted as, If we toss the coin

many times, then approximately half of the results will be heads. But how many is many?

Of course, if we toss the coin a hundred times, we probably will not get exactly fifty heads,

and even if we toss it a thousand times, the proportion of heads can diverge quite a bit from

.5. This is not likely, but explaining that word likely looks like it involves probability.

Moreover, if Jack wants to insure a car, the frequency definition is no good. The insurance

company needs to know the probability that he, Jack will have an accident. And clearly

there is no frequency available for the insurance company to resort to. Jack only wants to

insure his car once. And even if he wants to insure the car a second time, he will be a year
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older, and presumably more experienced. The probability of his having an accident, however

we define it, will not be the same the second time.

An alternative approach is that due to Ramsey, de Finetti, Savage, etc. Ramsey defines

probability subjectively, in terms of the bets which an agent is willing to accept [19]. Your

subjective probability of heads is .5 if you are willing to accept a double or nothing bet in

favour of heads, and also a double or nothing bet against heads. But what bets you want

to accept is up to you. There is nothing intrinsically objective about your bet-acceptance

attitudes.

There are standards of rationality which will apply. If you think in October 2004 that

the probability that Bush will win is .5 and also that the probability that Kerry will win is

.6, then bets can be placed in such a way that no matter what happens you will lose money.

For an opponent can bet $20 at even odds against Bush winning, and also $16 at 3:2 odds

against Kerry winning. Then if Bush wins, you gain $20 from the first bet but lose $24 on

the second bet. If Kerry wins, you gain $16 from the second bet and lose $20 from the first,

and finally if neither wins, you lose both bets. You lose in all three cases.

In other words, a Dutch book can be made against you, a term which already occurs

with de Finetti [8] who says that he is puzzled by the name – the Dutch are even more

puzzled! It is of course well known that an agent against whom Dutch book cannot be made

has a subjective probability which satisfies the Kolmogorov axioms like 0 ≤ p(E) ≤ 1 and

p(E ∨ F ) = p(E) + p(F ) when E ∧ F is null.1

But even if two people are both rational in the sense that Dutch book cannot be made

against either of them, it need not be the case that they both have the same subjective

probability. Thus the question What is the actual probability p(E) of the event E? cannot

be answered. The only solace we have is that if two agents start by assigning positive (but

different) probabilities to the same events, and they have the same experiences, and they

both revise using Bayes’ law, then their probabilities will converge in the long run.

So the notion of probability does have some foundational problems. But I want to put

these problems aside, and talk about some paradoxes, both old and recent, and conclude

with a new result about probabilistic conditionals.

1.1 The Saint Petersburg Paradox

“The St. Petersburg game is played by flipping a fair coin until it comes up tails, and the

total number of flips, n, determines the prize, which equals 2n. Thus if the coin comes up

tails the first time, the prize (in dollars) is 21 = 2, and the game ends. If the coin comes

up heads the first time, it is flipped again. If it comes up tails the second time, the prize is

22 = 4, and the game ends. If it comes up heads the second time, it is flipped again. And

1Isaac Levi [13] considers families of probabilities, but we shall not go into that here.
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so on. There are an infinite number of possible consequences (runs of heads followed by one

tail) possible. The probability of a consequence of n flips (P (n)) is 1/2n, and the expected

payoff of each consequence is the prize times its probability” [21].

How much should you pay to participate in the St. Petersburg game? It is easily

calculated that the expected payoff is infinite. You will win $2 with probability .5, $4 with

probability .25, $8 with probability .125, etc, adding up in all to ∞. Therefore any amount

whatsoever is acceptable as payment to enter the game. But most people rebel at the

thought.

One possible solution to this puzzle is to use utilities rather than payoffs. If we say that

the utility value of a financial payoff is logarithmic in the payoff, then the expected utility

of the St. Petersburg game will be finite and it would be a mistake to pay an amount whose

utility would exceed the expected utility of the game. This was essentially the suggestion of

Daniel Bernoulli.

But Bernoulli’s suggestion would not prevent other paradoxes, for if the payoff were 22n

with n = the number of heads before a tail, then the payoff from each outcome multiplied

by the probability of that outcome would again be exponential in dollars, and hence again

linear in utility. This would again give an infinite expected utility to the game. See also

Paul Weirich [22].

1.2 The Sleeping Beauty

But let us go on to our second, much more modern paradox due to Adam Elga [7], based on

an earlier paper of Piccione and Rubinstein [18]. Sleeping Beauty (SB) is put to sleep on a

Sunday using some drug, and after that a fair coin is tossed. If the coin comes up heads, she

is woken on Monday and asked the question Q (to be described later). If the coin comes up

tails, she is woken up on Monday, asked the question Q, and then put back to sleep, woken

up again on Tuesday and again asked the question Q. Sleeping Beauty knows this procedure

and that the coin is fair. But when she is woken, she does not know what day of the week it

is and whether she was woken before or not. Of course she does know that the day is either

Monday or Tuesday, but she does not know which.

The question Q is, What is the probability that the coin landed heads?

One answer is that it is .5. The coin is fair and SB knows this. Moreover, she knew

all along that she would be woken up. The fact that she is woken up and asked Q is not

surprising information which might change the probability. So the answer is .5. Or is it?

Suppose it is .5, and so she accepts a double or nothing bet on heads each time that Q is

asked. Over a hundred trials, there will be fifty heads and fifty tails, roughly. When the coin

lands heads, she will win one dollar (say) and when it lands tails, she will lose two dollars,

one for each time she is asked Q. So she will end up losing $50 net. This is not compatible
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with a .5 probability, and the right probability would be 1/3.

Which is the right answer? And is there a right answer? Various people have written

on this and let us just refer you to recent papers by Halpern, and by Bradley and Leitgeb

[11, 4]. Halpern claims that the problem here is asynchrony, an issue that arises often in

distributed computing. Bradley and Leitgeb claim that the connection between betting and

probability is only valid under certain presumptions, which fail in this case.

1.3 Probabilistic Conditionals

How should we interpret a conditional like, “If John comes to the party, then so will Mary,”

i.e., of the form If A then B ? The standard interpretation used in mathematics is to treat it

as equivalent to A → B i.e., as ¬A ∨B (see [20, 17]).

But often, this does not fit our intuition. The following example due to Dorothy Edging-

ton is instructive. Clearly if God does not exist, then he cannot answer our prayers. Consider

the statement S: If God does not exist, then it is not the case that if I pray, my prayers will

be answered. Many who disagree about the existence of God will tend to accept S. There are

two if s in S. Can they both be expressed as material conditionals? So suppose we symbolize

S as ¬G → ¬(P → A), interpreting both implications, the main one on the outside, and the

subsidiary one inside the parentheses, as material implications. Also suppose I don’t pray.

Then P is false and P → A is true. Hence ¬(P → A) is false. But then for S to be true,

¬G must be false and hence G must be true. I can prove the existence of God simply by not

praying!

Even those who believe in God will find this argument fishy and will look more kindly

on other ways, beside the material conditional, of interpreting the indicative conditional.2

One suggestion, associated with Ernest Adams and Edgington herself [1, 6], is to treat

the conditional probabilistically. Thus asserting If A then B is tantamount to saying that

the probability of B given A is high. Someone who says, “If John comes to the party, Mary

will come too,” is asserting that p(M |J) is high, perhaps more than .9.

Such probabilistic conditionals received a blow from results of David Lewis [14] who

showed that (on pain of triviality) such conditionals cannot be interpreted as propositions.

In other words, there cannot be a proposition (a set of possible worlds) C such that p(C) =

p(B|A) for all probability measures P .

2This particular variety of conditional is called the indicative conditional, to distinguish it from so called
subjunctives or counterfactuals.

4



2 Near-monotonicity: finite setting

But let us leave that worry aside and ask about the logic of probabilistic conditionals inter-

preted not as an implication (i.e., as a connective) but instead as a consequence relation |∼ .

This avoids the Lewis’ problem because we are not saying that If A then B is a proposition.

Let us say that we accept A |∼B if p(B|A) is high, where the |∼ represents the indicative

conditional interpreted probabilistically.

Arlo-Costa and Parikh [2] looked at probabilistic conditionals in the context of cores,3

a notion investigated by Bas van Fraasen, and they looked at some conditions on non-

monotonic relations considered by Dov Gabbay, and by Kraus, Lehmann and Magidor [9, 12].

Various rules of inference apply to such consequence relations. Thus from A |∼B and

B |= C we can derive A |∼C, where |= represents the classical consequence. This rule is

(RW) or right weakening and is sound. So is the rule (AND) which derives A |∼B ∧C from

A |∼B and A |∼C (provided we make some sacrifice in probability4). But a rule which does

not hold is monotonicity (M), or strengthening the antecedent. This would be the rule, from

A |∼B and C |= A we should be able to derive C |∼A. In particular we would like to be able

to derive (A ∧X) |∼B from A |∼B.

A |∼B

(M) —————–

A ∧X |∼B

Alas, the rule (M) is known not to be sound. The probability of B given A may be high,

and the probability of B given A and X may be low. For instance, if our domain is integers

upto 100, then the probability that n is odd given that it is prime is quite high. But the

probability that it is odd given that it is prime and less than 4 is only .5.

A well known example involves birds. Given that Tweety is a bird there is a high

probability that it flies. But given that Tweety is a bird and a penguin, the probability

drops to 0.

What we show below is that the rule (M) is mostly sound. That is that provided that A

is large enough, for most X, the conclusion continues to hold.

Probabilistic conditionals are mostly monotonic. And this is good news, for clearly, while

accepting that the monotonicity condition does not hold universally, we do want it to hold

usually.

For consider birds. If the dictum, “Birds fly,” could be destroyed at the drop of a hat,

it would be useless. We could not conclude that female birds fly, that blue birds fly, or that

the bird sitting on the window sill is likely to fly. It is almost always the case that when

we know that some creature is a bird, we also have some additional information X. And

3[2] interpret “high” as 1.
4If p(B|A) > .95 and p(C|A) > .95, then p(B ∧ C|A) > .9
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usually, we do not drop the dictum “Birds fly,” when we have some additional information.

Thus it must be the case that the dictum is reasonably sturdy. Information like, “It is a

penguin,” is unusual. It is this sturdiness that we will prove below.

2.1 A concrete example

We are representing propositions as sets of possible worlds. One of us has already objected

to this identification [15]. But the representation is commonly accepted and a result which

uses it ought to have a relevance. The following theorem is stated rather loosely, but will be

followed up by a more precisely stated theorem.

Theorem 2.1 Suppose that W is a finite space, with all points equally likely. Suppose that

A, B are sufficiently large subsets of W and p(B|A) ≥ .95. Then for most randomly selected

X ⊆ W , p(B ∩X|A ∩X) = p(B|A ∩X) > .948.

Of course the set theoretic operation ∩ corresponds to the logical operation ∧. In terms

of |∼ it means that if you know A |∼B and want to know if A ∧X |∼B, the answer will be,

“Most likely.”

We have used the numbers .95, .948, and the uniform distribution on W for convenience,

but of course the result holds more generally, as will be evident from the proof. What

“sufficiently large” B means will be made more explicit below. The technique of proof

requires the central limit theorem and the binomial distribution’s Gaussian approximation.

It is quite accessible.

Proof: We start by noting some simplifications. Since we are taking probabilities relative

to A or its subsets, the points in W which are not in A play no role. So we shall assume

that A = W . This automatically implies that B ⊆ A, an assumption which we could have

justified independently.

We require the sets to be large, so assume for concreteness that the set A − B has

cardinality 10,000 and B has cardinality 190,000, in which case p(B|A) = .95. A random

subset X of A has two parts: XB which is simply X ∩B, and the remaining part XR of X,

which is X ∩ (A−B).

The expected size of XB is 95,000 (half of 190,000) but it could be more or less. But by

the central limit theorem [3], the standard deviation σ of the size of XB is .5 ×
√

190, 000,

which is approximately 217.9. Thus 95, 000 − 3σ is more than 94,346. It is unlikely that

the actual value differs from the expected value by more than 3σ. Indeed, using standard

tables, the probability that XB has size more than 94,346 exceeds .9987. Similarly, the

set XR has expected size 5000, but the standard deviation σ′ is 50. Thus with the same

probability .9987, XR has size less than 5150. Thus with probability greater than .9974, the

ratio |XB|/|XB ∪XR| is greater than 94,346/(94,346+5,150) which is .9482, or very nearly

.95. (The figure .9974 comes from the fact that even if both errors of .0013 (1 - .9987) were
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to add up, we would still only get an error of .0026)

This means that if the sets A, B are both large, and p(B|A) > .95, then (when a random

subset X of A is chosen) with probability greater than .9974, p(B ∩X|A ∩X) > .9482. 2

We can show that similar results will hold if the random set X is chosen in some other

way, e.g. if we toss a die for each point of A and put a point in X only if the die shows a 6.

One could ask if the rule (M) can be called sound if it holds only for most X. However,

note that A |∼B does not say that if A is true, then B is also true 100% of the time. It only

says that if A holds, then B is very likely to hold. If the rule applies 99.74% of the time, and

the premise (which we accepted) only “applies” 95% of the time then it is hard to justify

the premise while rejecting the rule.

2.2 The limiting case

We now state a more precise result, which actually generalizes the observation above to the

case where the probability β of B relative to A is positive, but not necessarily close to 1.5

The intuitive idea is that we can think of the set X as a random sample from the space

W , in which case X ∩ A will be a random sample from A. The expected size of X ∩ A is

half the cardinality |A| of A and its standard deviation is .5 ×
√
|A|. The same holds for

the expected size of X ∩ B except for the multiplier β. Now if the actual sizes of the two

sets were the same as their expected sizes, then we would get p(B ∩X|A ∩X) to be equal

to p(B|A). Of course we cannot expect to be so lucky, for actual size can deviate from the

expected size. However, as the sizes of A and B go up, the deviation matters less and less,

and so the difference between p(B ∩X|A ∩X) and p(B|A) will tend to zero. This gives us

our second result.

Theorem 2.2 Let β > 0 be fixed, and let sets An, Bn increase monotonically in size with

Bn ⊆ An and limn→∞p(Bn|An) = β. Let Xn be randomly chosen subsets of An and ε > 0.

Then we have

limn→∞Pr[ | |Bn∩Xn|
|An∩Xn| − β| > ε] = 0.

In other words, if our prior probability of B given A was β > 0, and we received additional

information X, then provided A was large, we should expect the posterior probability of B

given A to still be close to β, and the probability that it differs by more than ε goes to 0 as

|A| goes to infinity.

In the sections below, we will look at the case where A is not merely large but is actually

infinite. Investigating that case will involve an excursion into measure theory. It will turn

out that the theorem above is (roughly) a corollary of the result we prove below.

5We use β for this probability – a number, as we use p(·) for the probability function. We use Pr[·] to
indicate probability for a meta-statement.

7



Another rule,

A |∼B

————-

¬B |∼¬A

is not capable of a similar treatment. If our universe consists solely of the innumerable

pigeons and the relatively few penguins, then “Most birds fly” will be true, but “Most

non-flyers are non-birds” will be false. Indeed all non-flyers will be birds in our universe!

3 Density and Measure

Definition 3.1 Let n be the set of natural numbers {0, 1, 2, ..., n − 1}, in context, and for

a given set X of natural numbers, let X ∩ n be the members of X between 0 and n − 1.

Then let the asymptotic density of set X be defined as the limit of its relative frequency:

d(X) = limn→∞
1
n
|X ∩ n|.

Note that asymptotic density is not defined for all sets of natural numbers, since the

limit may not exist, and in fact the set of subsets on which it is defined is not closed under

intersection. The asymptotic density can be extended to obtain a true measure, using an

ultrafilter. Nonetheless, we will make do with asymptotic density in this work.

A second issue to address as we move to the infinite case is what it means to choose at

random a subset of an infinite set. Clearly the probability of selecting any fixed set must be

0. For concreteness, let a random subset S of N be shorthand for a set such that each Sn is

a uniformly random subset of Nn for each n.

We will initially consider p(B|A) when A = N , and then generalize to smaller sets A.

4 Near-monotonicity: infinite setting

Let B ⊆ N have well defined asymptotic density, with d(B) = β. That is, we assume:

lim
n→∞

|B ∩ n|
n

= β (1)

Let X ⊆ N be chosen uniformly at random. We will now argue that we almost always

have p(X) = 1/2, p(X∧B) = β/2, and p(X∧B|X) = β. Each of these claims will state that

a certain property holds with probability 1, over random choices of subset X. Equivalently,

the set of such choices X has measure 1. More formally, we have:

Fact 4.1 (Strong Law of Large Numbers) Let Y1, Y2, ... be a sequence of independently

and identically distributed (IID) random variables with E[Yi] = m, and let Sn =
∑n

i=1 Yi.

then we have limn→∞ Sn/n = m with probability 1.
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Fact 4.2 Let X be chosen uniformly at random from N , i.e., let Xi be 0 or 1 with equal

probability, for each i > 0. Then PrX(d(X) = 1/2) = 1.

Proof: This is simply a restatement of Borel’s Normal Number Theorem [3], i.e., that with

probability 1:

lim
n→∞

|X ∩ n|
n

= 1/2 (2)

This also follows from the Strong Law of Large Numbers. 2

Lemma 4.3 With probability 1, we have limn→∞
|X∩B∩n|
|B∩n| = 1/2. (Intuitively, this means

p(X|B) = 1/2 with probability 1.)

Proof: Let f(i) be the index of the ith element of set B. B will be infinite with probability

1, so assume that this is so. Let Yi = Xf(i). Then the random variables Y1, Y2, ... are IID

with E[Yi] = 1/2, so by the Strong Law of Large Numbers, we have with probability 1 that

limn→∞ Sn/n = 1/2. Now, what are Sn and n?

First, by definition, Sn =
∑n

i=1 Xf(i) = the number of elements among the first n members

of B which are also in X. f(i) is some index number, say n̂. Then Sn is the number of

numbers from 1 to n̂ that are in both B and X, i.e., Sn = |B ∩ X ∩ n̂|. Second, n is the

number of elements we are considering from B, i.e., the number of elements of B in the range

of 1 to n̂, which is |B ∩ n̂|. So we have with probability 1 that:

1/2 = lim
n→∞

Sn/n = lim
n̂→∞

|B ∩X ∩ n̂|
|B ∩ n̂|

(3)

Since both n and n̂ go to ∞, we can remove all the hats in the final expression. 2

We can now state our first result:

Theorem 4.4 If B has asymptotic density d(B) = β, then d(B∧X)
d(X)

= β with probability 1.

Proof: Since Equations 2 and 3 each hold with probability 1, their conjunction does as well.

We assume both hold for the remainder of the proof. Equation 1 holds by assumption. Let

Eq(i) indicate the value of the quantities in Equation i. Then we have:

Eq(3) · Eq(1)/Eq(2) = ( lim
n→∞

|B ∩X ∩ n|/|B ∩ n|) · (limn→∞ |B ∩ n|/n)

(limn→∞ |X ∩ n|/n)

= lim
n→∞

|B ∩X ∩ n|
|B ∩ n|

· |B ∩ n|/n
|X ∩ n|/n

= lim
n→∞

|B ∩X ∩ n|
|X ∩ n|

=
d(B ∧ x)

d(X)

But we also have:

Eq(3) · Eq(1)/Eq(2) = 1/2 · β/(1/2) = β

which yields the result. 2
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Corollary 4.5 If B has well defined asymptotic density relative to A, i.e., limn→∞
|A∩B∩n|
|A∩n| =

β, then limn→∞
|A∩B∩X∩n|
|A∩X∩n| = β with probability 1.

Proof: We can again use the trick of renaming indices. First, zoom in and rewrite

limn→∞ |A ∩B ∩ n|/|A ∩ n| as limn→∞ |BA ∩ n̂|/|n̂|, where BA = A∩B and n̂ = |A∩n|. We

can now apply the theorem to obtain limn̂→∞ |BA ∩X ∩ n̂|/|X ∩ n̂| = β with probability 1.

Finally, we zoom back out, and rewrite the expression for β as limn→∞ |A ∩B ∩X ∩ n|/|A ∩X ∩ n|.
2

Corollary 4.6 For almost all B, we have Pr[d(X∧B)
d(X)

= d(B)] = 1 (respectively Pr[d(X∧B)
d(X∧A)

=

d(B|A)] = 1). Intuitively, this means that p(B|X) = d(B) (respectively p(B|A ∧ X) =

d(B|A)) with probability 1.

Proof: We assumed that set B has well defined asymptotic density to obtain the theorem.

Note, however, that almost all subsets of N do have asymptotic density. This is clear from

Fact 4.2: since the density is 1/2 with probability 1, the density in particular exists with

probability 1. 2

Corollary 4.7 (Theorem 2.2) Let β > 0 be fixed and let sets An, Bn increase monotoni-

cally in size with Bn ⊆ An and limn→∞p(Bn|An) = β. Let Xn be randomly chosen subsets

of An and ε > 0. Then we have limn→∞Pr[ | |Bn∩Xn|
|An∩Xn| − β| > ε] = 0.

Proof: Without loss of generality, assume that An ⊆ An+1, Bn ⊆ Bn+1, Xn ⊆ Xn+1 for all n.

(Rename the elements of each as needed.) We can then interpret n as a bound, and the sets

An, Bn, Xn as finite prefixes of infinite sets A, B, Xn, i.e., An = A∩n, Bn = B∩n, Xn = X∩n.

The assumption limn→∞p(Bn|An) = β means that B has well defined asymptotic density

relative to A, i.e., limn→∞ |A ∩B ∩ n|/|A ∩ n| = β. Therefore Corollary 4.5 gives us that

limn→∞ |A ∩B ∩X ∩ n|/|A ∩X ∩ n| = β with probability 1, which is actually stronger than

what we require: limn→∞Pr[ ||Bn ∩Xn|/|An ∩Xn| − β| > ε] = 0. 2

5 Open Questions

• We proved the result under the assumption that B has asymptotic density, which is

almost always true. The asymptotic density can be extended, using an ultrafilter, to

obtain a true measure function. Can a similar result be proven for such a measure?

Should it?

• Can the result be extended to an uncountable universe?

• Can the result be formulated so as to apply to a non-uniform distribution for selecting

members of X, such as 1/n2?
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• We showed that for almost all propositions B, the result holds. Implicitly this is

assuming a uniform distribution on the choice of B. What about other distributions?

Can we show that the result holds for almost all distributions on the choice of B?
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